首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The kinetics of the oxidation of ascorbic acid by diaquatetrakis (2,2-bipyridine)--oxo diruthenium(III) in aqueous HClO4 were investigated. The dependence of the second order rate constantk 2 on [H+] is given by k 2=a+b[H+], indicating that both the undissociated form and the monoanion of ascorbic acid are reactive. Marcus theory was used to estimate the redox potential for the RuIII-O-RuIII/RuIII-O-RuII couple and a feasible mechanism has been proposed to explain the results.  相似文献   

2.
The stoichiometry and kinetics of the reduction of Fe2(III)(bpy)4OCl4 by 1,3-benzenediol have been investigated in aqueous hydrochloric acid medium. The reaction is first order in [oxidant] but zero order in [reductant]. There is no evidence for the formation of an intermediate complex of significant stability. The presence of NO3 or ClO4 had no effect on the rate of the reaction. Also, the reaction rate is not affected by the changes in the ionic strength and dielectric constant of the reaction media. A plausible mechanism involving an outer-sphere complex formed via an ion pair is proposed for the reaction.  相似文献   

3.
The kinetics and mechanism of the reduction of diaquotetrakis(2,2′-bipyridine)-µ-oxodiruthenium(III), [(H2O)2(bipy)4Ru2O]4+, by H3PO2 has been studied in aqueous acid at ionic strength = 0.5 mol dm?3 (NaClO4), [H+] = 5.0 × 10?2 mol dm?3 and temperature = 31 ± 1 °C. Measurement of the stoichiometry showed that 1 mole of [(H2O)2(bipy)4Ru2O]4+ was reduced by 1 mole of H3PO2. The reaction was found to be first order with respect to both [(H2O)2(bipy)4Ru2O4+] and [H3PO2], hence second order overall. Variations in the ionic strength and dielectric constant of the reaction medium had no effect on the rate. Also, addition of various ions to the reaction medium did not significantly alter the rate. Free radicals were identified during the course of the reaction by a polymerisation test. Spectroscopic information and Michaelis–Menten plots suggested the absence of an intermediate complex prior to electron transfer. [(H2O)2(bipy)2Ru]2+, the reduction product of [(H2O)2(bipy)4Ru2O]4+, plus H3PO3, the oxidation product of H3PO2, were identified in the product solutions. It is suggested that the reaction proceeds through the outer sphere pathway. A mechanism for the reaction is proposed.  相似文献   

4.
Phenylhydrazine (R) quantitatively reduces [Fe2(μ-O)(phen)4(H2O)2]4+ (1) (phen?=?1,10-phenanthroline) and its conjugate base [Fe2(μ-O)(phen)4(H2O)(OH)]3+ (2) to [Fe(phen)3]2+ in presence of excess 1,10-phenanthroline in the pH range 4.12–5.55. Oxidation products of phenylhydrazine are dinitrogen and phenol. The reaction proceeds through two parallel paths: 1?+?R?→?products (k 1), 2?+?R?→?products (k 2); neither RH+ nor the doubly deprotonated conjugate base of the oxidant, [Fe2(μ-O)(phen)4(OH)2]2+ (3) is kinetically reactive though both are present in the reaction media. At 25.0°C, I?=?1.0?M (NaNO3), the rate constants are k 1?=?425?±?10?M?1?s?1 and k 2?=?103?±?5?M?1?s?1. An inner-sphere, one-electron, rate-limiting step is proposed.  相似文献   

5.
The kinetics of the oxidation of tris(2,2′-bipyridyl)iron(II) and tris(1,10-phenanthroline)iron(II) complexes ([Fe(LL)3]2+, LL = bipy, phen) by nitropentacyanocobaltate(III) complex [Co(CN)5NO2]3? was investigated in acidic aqueous solutions at ionic strength of I = 0.1 mol dm?3 (HCl/NaCl). The reactions were carried out at fixed acid concentration ([H+] = 0.01 mol dm?3) and the temperature maintained at 35.0 ± 0.1 °C. Spectroscopic evidence is presented for the protonated oxidant. Protonation constants of 360.43 and 563.82 dm3 mol?1 were obtained for the monoprotonated and diprotonated Co(III) complexes respectively. Electron transfer rates were generally faster for [Fe(bipy)3]2+ than [Fe(phen)3]2+. The redox complexes formed ion-pairs with the oxidant with increasing concentration of the oxidant over that of the reductant. Ion-pair constants for these reaction were 160.31 and 131.9 dm3 mol?1 for [Fe(bipy)3]2+ and [Fe(phen)3]2+, respectively. The activation parameters measured for these systems have values as follows: ?H (kJ K?1 mol?1) = +113.4 ± 0.4 and +119 ± 0.3; ?S (J K?1) = +107.6 ± 1.3 and 125.0 ± 1.6; ?G (kJ K?1) = +81 ± 0.4 and +82.4 ± 0.4; and E a (kJ mol?1) = 115.9 ± 0.5 and 122.3 ± 0.6 for LL = bipy and phen, respectively. Effect of added anions (Cl?, $ {\text{SO}}_{4}^{2 - } $ and $ {\text{ClO}}_{4}^{ - } $ ) on the systems showed decrease in the electron transfer rate constant. An outer-sphere mechanism is proposed for the reaction.  相似文献   

6.
Formation of nickel(II) complexes with ethylenediaminetetraacetic acid (Edta) and 2,2′-dipyridyl (Dipy) has been studied by electronic absorption spectroscopy. Mathematical modeling has demonstrated that the most probable mathematical models to describe the experimental dependences of absorption on the medium acidity and concentration of solution components relies on the dissociation constants of the ligands (K i ) and stability constants (β) of homoligand, heteroligand, and polynuclear complexes of general composition [Ni m Dipy n Edta r ]2m ? 4r (m = 1–4, n = 0–8, r = 0–1) as parameters. The reaction equilibrium constants and stability constants of the resulting complexes have been calculated. The structures of these complexes have been suggested.  相似文献   

7.
《Polyhedron》1986,5(3):761-763
Although cyanide does not substitute chloride in the cis-dichlorobis (ethylenediamine)Co(III) cation in water, it does so in the analogous 2,2′-bipyridine-containing complex.  相似文献   

8.
Tris(2,2-bipyridine) ruthenium(II) complex, ionic probe, was incorporated into poly (N-isopropylacrylamide) (PNIPA), which is known to be a thermoresponsive polymer, by a copolymerization method. Electron transfer quenching of the complex probe by methyl viologen was investigated as a function of temperature. The electron transfer quenching rate constant (k q) in a globular state (higher temperature than the LCST (31°C)) is 4–5 times as large as that in a coil state (lower temperature) from the Stern-Volmer analysis. The result is quite different from the quenching of pyrene probe incorporated into PNIPA in the previous study. This is because hydrophilic ruthenium probe is located at the interface of polymer globular matrix even in a globular state, whereas pyrene probe was embedded into the hydrophobic matrix. The quenching behavior is discussed by a difference in molecular environment of the probes in phase transition of PNIPA in the aqueous solution.  相似文献   

9.
The kinetics of oxidation of N,N′-ethylenebis(isonitrosoacetyleacetoneimine)copper(II) complex, CuIIL, by N-bromosuccinimide (SBr) in weakly aqueous acidic solutions was studied under pseudo-first-order conditions. Plots of ln(A  ? A t ) versus time where A t and A are absorbance values of the Cu(III) product at time t and infinity, respectively, showed marked deviations from linearity. The curves showed an acceleration of reaction rate consistent with an autocatalytic behavior. In the presence of Hg(II) ions, plots of ln(A  ? A t ) versus time are linear up to >85 % of reaction. The value of the observed rate constant, k obs, increases with decreasing pH. At constant reaction conditions, the dependence of the observed rate constants, k obs, is described by Eq. (1). 1 $$ k_{\text{obs}} = k_{\text{o}} + k_{1} \left[ {{\text{H}}^{ + } } \right] $$ The dependence of both k o and k 1 on [SBr] is not linear. The mechanism of the title reaction is consistent with an inner sphere mechanism in which a pre-equilibrium step precedes the electron transfer step. The overall rate law is represented by Eq. (2) where [CuIIL]t and K 1 represent the total copper(II) complex concentration and the pre-equilibrium formation constant, respectively. 2 $$ d\left[ {{\text{Cu}}^{\text{III}} {\text{L}}^{ + } } \right]/dt = \left\{ {\left( {k_{\text{o}} + k_{1} \left[ {{\text{H}}^{ + } } \right]} \right)\left[ {\text{SBr}} \right]\left[ {{\text{Cu}}^{\text{II}} {\text{L}}} \right]_{t} } \right\}/\left( {1 + K_{1} \left[ {\text{SBr}} \right]} \right) $$ .  相似文献   

10.
Preliminary stoichiometric and kinetic results bearing on the mechanism of the reduction of HCO3 to CO by tris(2,2′-bipyridine)cobalt(I) in aqueous media are reported. The results indicate that CO (not formate) is the dominant carbon product and that it is scavenged by Co(bpy)3+ to give insoluble [Co(bpy)(CO)2]2. At pH ∼ 9, bicarbonate reduction occurs in competition with H2O reduction. Both processes are inhibited by bpy and promoted by H+, suggesting the common intermediate Co(bpy)2(H2O)H2+. The bicarbonate reaction itself branches to give H2 and CO in ∼ 3:1 ratio.  相似文献   

11.
The electrochemical behavior of electrochemical deposition of Au nanoparticles onto a glassy carbon electrode (GCE) and its application for the electrocatalytic electrogenerated chemiluminescence (ECL) of Ru(bpy)32+ in an aqueous solution without coreaction are investigated in this report. The modification of GCE by Au nanoparticles results in excellent catalysis of the ECL of Ru(bpy)32+. The effects of various factors, such as potential scan range, the presence of nitrogen and oxygen, and the scan rate on Ru(bpy)32+. ECL peaks, were systematically studied. This article has provided insight into the design of an Au-nanoparticle-modified electrode for ECL, analytical and catalytic applications. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 9, pp. 1127–1132. The text was submitted by the authors in English.  相似文献   

12.
Three new diruthenium(III) complexes, [Ru2O(2-sb)2(2,2′-bipy)2(H2O)2]·2.5H2O (1), [Ru2O(3-sb)2(2,2′-bipy)2(H2O)2]·9H2O (2), and [Ru2O (4-sb)2(2,2′-bipy)2(H2O)2]·9H2O (3), where sb2? is sulfobenzoate dianion and 2,2′-bipy is 2,2′-bipyridine, were synthesized using hydrothermal methods and characterized by IR, elemental analysis, thermogravimetric analysis, UV–vis, and fluorescence spectra. The single crystal X-ray analysis showed that each of these complexes has a dinuclear core stabilized by two bridging carboxylates and one bridging O2?. Variable sb2? ligands (2-sb, 3-sb, and 4-sb) in these complexes lead to diverse electronic spectroscopic behavior. The efficiency of activating methyl phenyl sulfide oxidation utilizing H2O2 in 3 equiv. was studied at 23?±?2?°C. The effect of the amount of catalyst and solvents on activities was investigated. Under optimized reaction conditions, the major product was sulfoxide. Complex 1 gave significant conversion of 100 and 98% selectivity for sulfoxide after 4?h.  相似文献   

13.
Reduction of [Rh2(-OAc)2(bpy)2(H2O)2](OAc)2 and [Rh2Cl2(-OAc)2(bpy)2] · 3H2O complexes with ethanol and [Cr2(OAc)4(H2O)2] has been investigated using e.p.r. and u.v.–vis. spectra. The results indicate that stable complexes containing the [Rh2 3+] entity are not formed. The X-ray structure of [Rh2Cl2(-OAc)2(bpy)2] · 3H2O has been determined. Coordination around the Rh atom is in the form of a distorted octahedron. The complex shows an almost ideal eclipsed conformation. The equatorial coordination sites are occupied by bridging carboxylato ligands and 2,2-bipyridine and axial positions by the Cl ligand and the rhodium atom. The Rh–Rh distance is 2.574 Å.  相似文献   

14.
The use of COSzY and NOESY 1H NMR techniques allows for the assignment of 1H NMR chemical shifts for the bis(2,2′-bipyridine)carbonatocobalt(III) ion. These assignments are further confirmed by DFT GIAO-NMR calculations using the model chemistry B3LYP/6-31G(d,p) and invoking the IEF-PCM representing acetone. These computations also allow for initial quantification of a cis influence on the chemical shift due to anisotropic ring currents and a much less pronounced trans influence on the chemical shift due to inductive effects. The computational model employed is also compared to previously accepted models for anisotropic effects.  相似文献   

15.
It is shown that photolysis of [PtMe4(bipy)] using incident radiation with λ 436 or 473 nm occurs with high quantum efficiency of 0.8–1.0 to give homolysis of a methylplatinum bond; this has allowed a study of the chemical reactions of the [PtMe3(bipy)] radical.  相似文献   

16.
《Polyhedron》1988,7(2):155-159
The synergic extraction of various tervalent lanthanides (Ln), La, Ce, Nd, Sm, Gd, Tb, Yb and Lu, with 2-thenoyltrifluoroacetone (Htta) in the presence of a bidentate heterocyclic amine, 2,2′-bipyridine (bipy), in benzene was investigated. The synergic enhancement was attributed to the formation of the adducts, Ln(tta)3(bipy). The synergic extraction of La(III), Sm(III) and Lu(III) with Htta and a unidentate amine, pyridine (py), was also studied and the formation of the adducts, Ln(tta)3py and Ln(tta)3(py)2, was observed. The adduct formation constants, βs,1 and βs,2, were determined. The βs,2 values for py decrease with increasing atomic number of Ln(III), but βs,1 values for bipy increase with increasing atomic number of Ln(III). The synergic extraction constants and the separation factors in the bipy system were also determined.  相似文献   

17.
18.
The electrochemical behaviour of tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate (Ru(II)) microparticles, immobilised on a graphite electrode and adjacent to an aqueous electrolyte solution, has been studied by cyclic voltammetry and an in situ spectroelectrochemical technique. The solid Ru(II) complex exhibits one reversible redox couple with a formal potential (Ef) of 1.1 V versus Ag¦AgCl. The continuous cyclic voltammetric experiments showed that the Ru(II) microparticles are stable during the electrochemical conversions. The in situ spectroelectrochemical study showed that the absorbance at 463 nm decreased due to the oxidation of Ru(II) to Ru(III). Upon reduction, the growth of absorbance at 463 nm was observed due to the formation of Ru(II) complex and this process was reversible.  相似文献   

19.
《Polyhedron》1986,5(3):765-766
Cis-aquocyanobis(2,2′-bipyridine)Co(III) and cis-aquocyanobis(1,10-phenanthroline)Co(III) cations present in their IR spectra as cyano-group band in a Nujol mull at ν = 2200 cm−1. To justify the shift in the frequency from 2140 to 2200 cm−1 of cyanide in these compounds, we have hypothesized that the cyano group is a bridge between the metal atom and one hydrogen atom of the water molecule in the cis position on the Co(III) coordination sphere.  相似文献   

20.
The kinetics and mechanism of the Cr(VI) oxidation of ethane-1,2-diol in the presence and absence of 2,2′-bipyridine (bipy) in aqueous acid media were studied under the conditions [ethane-1,2-diol]T ? [Cr(VI)]T. Under the kinetic conditions, monomeric Cr(VI) was found to be kinetically active in the absence of bipy, whereas in the bipy-catalyzed path the Cr(VI)-bipy complex was the active oxidant. In this path, the Cr(VI)-bipy complex undergoes nucleophilic attack by the substrate to form a ternary complex which subsequently undergoes redox decomposition (through 2e transfer) leading to hydroxyethanol and the Cr(IV)-bipy complex. The Cr(IV)-bipy complex then participates further in oxidation of organic substrate, ultimately converted into inert Cr(III)-bipy complex. The uncatalyzed path shows a second-order dependence on [H+], while the bipy-catalyzed path shows a first-order dependence on [H+]. Both the uncatalyzed and bipy-catalyzed paths show first-order dependence on [ethane-1,2-diol]T and on [Cr(VI)]T. The bipy-catalyzed path is first-order in [bipy]T. All these patterns remain unaltered in the presence of externally added surfactants. The effects of a cationic surfactant, N-cetylpyridinium chloride (CPC), and an anionic surfactant, sodium dodecyl sulfate (SDS), on both the uncatalyzed and bipy-catalyzed paths were studied. CPC inhibits both the uncatalyzed and bipy-catalyzed paths, whereas SDS catalyzes the reactions. The observed micellar effects are explained by considering a distribution pattern of the reactants between the micellar and aqueous phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号