首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bromination of endo-ethenotetrahydrothebaine derivatives having a pyrrolidine ring fused at the C7-C8 bond, namely 1′-substituted 4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinan-2′,5′-diones, 1′-aryl-4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinans, and 4,5α-epoxy-6α,14-etheno-2′α-hydroxy-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morpphinan-5′-one, with molecular bromine in formic acid smoothly afforded the corresponding 1-bromo derivatives. Iodination of 4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]-4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]-morphinan-2′,5′-dione with iodine(I) chloride gave 4,5α-epoxy-6α,14-etheno-1-iodo-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinan-2′,5′-dione. The resulting 1-halo derivatives were brought into the Heck reaction with acrylic acid esters to obtain 1-[(E)-2-(alkoxycarbonyl)ethenyl]-substituted compounds. Demethylation of the 6-methoxy group in 1-bromo-endo-ethenotetrahydrothebaines was accomplished using boron(III) bromide in chloroform.  相似文献   

2.
ABSTRACT

The four derivatives of β-maltosyl-(1→4)-trehalose have been synthesized, which are monodeoxygenated at the site of one of the primary hydroxyl groups. The tetrasaccharides were constructed in [2+2] block syntheses. Thus, 6′″-deoxy-β-maltosyl-(1→4)-trehalose was prepared by selective iodination of allyl 2,3,6,2′,3′-penta-O-acetyl-β-maltoside (3) followed by catalytic hydrogenolysis and coupling with 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (9), and 6″-deoxy-β-maltosyl-(1→4)-trehalose by selective iodination of allyl 4′,6′-O-isopropylidene-β-maltoside (14), coupling with 9, and one-step hydrogenolysis at the tetrasaccharide level. For the synthesis of 6′-deoxy-β-maltosyl-(1→4)-trehalose, the diol 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′-di-O-benzyl-α-D-glucopyranoside (22) was selectively iodinated and glycosylated with acetobromomaltose followed by catalytic hydrogenolysis. The 6-deoxy-β-maltosyl-(1→4)-trehalose was obtained upon selective iodination of a tetrasaccharide diol.  相似文献   

3.
A novel class of nucleosides with the C1, atom bonded to three hetero atoms was synthesized. 2′-Thia-2′,3′-dideoxycytidine was the pilot compound of this series. (±)-β-2′-Thia-1′,3′-dideoxycytidine ( 6 ) and (±)-α-2′-thia-2′,3′-dideoxycytidine ( 7 ) were synthesized from (±)-3-mercapto-1,2-propanediol. The synthesis of the enantiomerically pure 2′-thia-2′,3′-dideoxycytidines (α-D-form, β-D-form, α-1-form and β-L-form) from optically pure (S)-(2,2-dimethyl-1,3-dioxalan-yl)methyl p-toluenesulfonate ( 8 ) and its (R)-isomer 18 was also described. The preliminary biological results showed that (+)-β-D-2′-thia-2′,3′-dideoxycytidine ( 26 ) was the most active against human hepatitis B virus with an ED50 of 3 μM.  相似文献   

4.
The cyclization of 2-(3′,4′-dimethyl6?′-trimethylsilyl-4′-hexenyl)-2-cyclohexenone with TiCl4, afforded stereospecifically 6α,7α-dimethyl-6β-vinyl-5βH-1-decalone derivative and the two-fold diastereoselection involved is reasoned in terms of orientation control and folding strain control.  相似文献   

5.
We report the synthesis of 5-[5′-(1′,2′:3′,4′-di-O-isopropylidene-β-L-arabinopyranosyl)]tetrazole, from 1,2:3,4-di-O-isopropylidene-α-D-galacto-1,6-hexodialdo-1,5-pyranose oxime via 1,2:3,4-di-O-isopropylidene-α-D-galcturononitrile as intermediate by 1,3-dipolar cycloaddition. We also report the synthesis of 5-methyl- and 5-phenyl-2-[5′-(1′,2′:3′,4′-di-O-isopropylidene-β-L-arabinopyranosyl)]-1,3,4-oxadiazole from the tetrazole derivative. The physical and spectroscopic characterizations of the heterocyclic derivatives as well as the intermedi ate nitrile and the principal by product are described and we discuss its possible formation pathway. We present the preferential conformation in solution using computational calculation and spectroscopic data.  相似文献   

6.
Per- and poly-substituted oligosaccharide derivatives, with trehalose cores, have been prepared and assessed for their potential for use as excipients in controlled-release formulations. The synthesized compounds, generally with acyl and amido substituents, included 6,6′-N,N′ -diamido-6,6′ -dideoxy-α,α -trehalose derivatives, 6,6′ -bis(1,2,3,4-tetra-O-acetyl-β -D-glucopyranuronyl)-α, α -trehalose derivatives, 2,2′,3,3′ -tetra-O-acetyl-6,6′ -bis-(1,2,3,4-tetra-O-acetyl-β-D-glucopyranuronyl)-4,4′ -di-O-acyl-α,α-trehalose, 2, 2′, 3, 3′ -tetra-O-acetyl-6-(1,2,3,4-tetra-O-acetyl-β-D-glucopyranuronyl)-4,4′,6′ -tri-O-acyl-α,α-trehalose, and 2,2′,3,3′,4,4′ -hexa-O-acetyl-6,6′ -bis-(1,2,3,4-tetra-O-acetyl-6-O-succinyl-β-D-glucopyranuronyl)-α,α-trehalose. Compounds were characterized by NMR, IR, MS and optical rotations; elemental analyses; or HRMS. The compounds formed amorphous materials either on fast quenching of melts or on spray drying. Properties, used in the initial assessment of the potential as controlled-release excipients, were log10 P and glass transition, Tg, values.  相似文献   

7.
《Tetrahedron: Asymmetry》1998,9(14):2451-2464
3′-Sulfated and 3′,6′-disulfated Lewis x trisaccharides have been prepared through selective sulfation of methyl 2-acetamido-6-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-β-D-glucopyranoside, followed by catalytic hydrogenolysis. In a similar manner, 3′,6-disulfated and 3′,6,6′-trisulfated Lewis x trisaccharides have been selectively obtained from methyl 2-acetamido-2-deoxy-4-O-β-D-galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-β-D-glucopyranoside.  相似文献   

8.
The synthesis of 5-[6′-deoxy-(1′,2′:3′,4′-di-O-isopropylidene-α-D-galactopyranos-6′-yl)]tetrazole and its reaction with acetic anhydride and 1,2:3,4-di-O-isopropylidene-6-O-(4-toluenesulfonyl)-α-D-galactopyranose are described.  相似文献   

9.
The tetrazoles 5-(6′-acetamido-6′-deoxy-1′,2′:3′,4′-di-O-isopropylidene-D-glycero-α-D-galactohexopyranos-6′-yl)tetrazole ( 1 ) and 5-(6′-acetamido-6′-deoxy-1′,2′:3′,4′–di-O-isopropylidene-L-glycero-α-D-galacto-hexopyranos-6′-yl)-tetrazole ( 2 ) were synthesized by the 1,3-dipolar cycloaddition reaction of the epimeric α-acetamidonitriles 5 and 6 , respectively, with sodium azide. Reaction of tetrazole 1 with acetic anhydride in the presence of pyridine afforded the N-acetyl-1,3,4-oxadiazole derivative 3 and the N-acetylacetamido-1,3,4-oxadiazole derivative 7 . The N-acetylacetamido-1,3,4-oxadiazole derivative ( 8 ) was isolated when the tetrazole 2 was allowed to react under the same conditions. The physical and spectroscopic data of the five new compounds 1, 2, 3, 7 and 8 are presented.  相似文献   

10.
The treatment of 3β-hydroxy-16α-bromo-5α-androstan-17-one, 3β-acetoxy-16α-bromo-5-androsten-17-one and 21-bromo-5-pregnen-3β-ol-20-one with 4,5-dimethyl-o-phenylenediamine gave substituted quinoxalines. Hydrolysis of 3β-acetoxy-5-androsteno[16,17-b]-6′,7′-dimethylquinoxaline produced the corresponding 3β-hydroxy compound. 3-Oxo-4-androsteno[16,17-b]-6′,7′-dimethylquinoxaline was obtained by Oppenauer oxidation of the corresponding alcohol.  相似文献   

11.
12.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs.  相似文献   

13.
A facile method for the synthesis of 3′-α-fluoro-2′,3′-dideoxyadenosine 6 has been developed. Fluorination of 5′-O-acetyl-3′-β-bromo-3′-deoxyadenosine 3 with MOST gave 2′-β-bromo-3′-α-fluoro-2′,3′-dideoxyadenosine 4 via a rearrangement of the 3′-β-bromine to the 2′-β position during 3′-α fluorination. The 2′-β bromine was reduced by radical reduction and then the 5′-O-acetyl group was removed to afford 3′-α-fluoro-2′,3′-dideoxyadenosine 6 in good yield. A possible mechanism for the rearrangement is discussed.  相似文献   

14.
The reaction of 1-O-hexadecyl-2-O-methyl-sn-glycerol with 2,3,6,2′,3′,4′,6′-hepta-O-acetyl-α-lactosylphosphoramidate or α-maltosylphos-phoramidate in the presence of trimethylsilyl triflate and molecular sieves afforded 1-O-hexadecyl-2-O-methyl-3-O-(2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-lactosyl)-sn-glycerolipid or β-maltosyl-sn-glycerolipid stereoselectively in moderate yields after column chromatography. Alkaline hydrolysis of the O-peracetyl glycerolipids gave the desired β-glycolipids 1 and 2.  相似文献   

15.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

16.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

17.
Nine compounds were isolated from Nocardia sp. YIM 64630, and their structures were elucidated as 5′-O-acetyl-2′-deoxyuridine (1), 22E,24R-5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol (2), 22E,24R-5α,6α-epoxyergosta-8,22-diene-3β,7α-diol (3), 22E,24R-ergosta-7,22-diene-3β,5α,6β-triol (4), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (5), 4′,5,6-trihydroxy-7-methoxyisoflavone (6), 2,4,4′-trihydroxy-deoxybenzoin (7), methyl [4-hydroxyphenyl]acetate (8) and daidzein by extensive spectroscopic analyses. Compound 1 was isolated from natural resources for the first time. The antimicrobial and antioxidant activities of compounds 18 were investigated.  相似文献   

18.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. VIII. Synthesis of (3S,3′S)-7,8,7′,8′-Tetradehydroastaxanthin and (3S,3′S)-7,8-Didehydroastaxanthin (Asterinic Acid) The synthesis of all-trans-(3S,3′S)-3,3′-dihydroxy-7,8, 7′,8′-tetradehydro-β, β-carotene-4,4′-dione ( 1 ), of all-trans-(3S,3′S)-3,3′-dihydroxy-7, 8-didehydro-β,β-carotene-4,4′-dione ( 2 ) (asterinic acid = mixture of 1 and 2 ), and of their 9,9′-di-cis- and 9-cis-isomers is reported starting from (4′S)(2E)-5-(4′-hydroxy-2′, 6′,6′-trimethyl-3′-oxo-l′-cyclohexenyl)-3-methyl-2-penten-4-ynal ( 8 ). The absolute configuration (3S,3′S) for both components 1 and 2 of asterinic acid ex Asterias rubens is confirmed on the basis of spectroscopic and direct comparison.  相似文献   

19.
Mitsunobu displacement of (−)-(1S,4R,5S,6S)-4,5,6-tris{[(tert-butyl)dimethylsilyl]oxy}cyclohex-2-en-1-ol ((−)- 12 ; a (−)-conduritol-F derivative) with 4-ethyl-7-hydroxy-2H-1-benzopyran-2-one ( 16 ) provided a 5a-carba-β-D -pyranoside (+)- 17 that was converted into (+)-4-ethyl-7-[(1′R,4′R,5′S,6′R)-4′,5′,6′-trihydroxycyclohex-2′-en-1′-yloxy]-2H-1-benzopyran-2-one ((+)- 5 ) and (+)-4-ethyl-7-[(1′R,2′R,3′S,4′R)-2′,3′,4′-trihydroxycyclohexyloxy]-2H-1-benzopyran-2-one ((+)- 6 ). The 5a-carba-β-D -xyloside (+)- 6 was an orally active antithrombotic agent in the rat (venous Wessler's test), but less active than racemic carba-β-xylosides (±)- 5 and (±)- 6 . The 5a-carba-β-L -xyloside (−)- 6 was derived from the enantiomer (+)- 12 and found to be at least 4 times as active as (+)- 6 . (+)-4-Cyanophenyl 5-thio-β-L -xylopyranoside ((+)- 3 ) was synthesized from L -xylose and found to maintain ca. 50% of the antithrombotic activity of its D -enantiomer. Compounds (±)- 5 , (±)- 6 , and (−)- 6 are in vitro substrates for galactosyltransferase 1.  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(22):3661-3666
1-(2′,3′,4′,6′-Tetra-O-benzyl-α-d-glucopyranosyl)-2-propene 1a and 1-(2′,3′,4′,6′-tetra-O-benzyl-β-d-glucopyranosyl)-2-propene 1b were hydroformylated at different temperatures affording linear and branched aldehydes in either a 1:1 or 2:1 regioisomeric ratio, depending on the stereochemistry of the starting substrate. The diastereoisomeric ratio of the branched isomer depended on the reaction temperature as well as the alkene structure, the highest value (85:15) being obtained in the case of hydroformylation of the α-isomer at 0 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号