共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Die Kristallstrukturen der Titelkomplexe, deren einer zwei verschiedene Carbonylmetall-Einheiten, deren anderer zwei verschiedene Brückenliganden besitzt, wurden bestimmt. Die Stereochemie des Cr? Ni-Komplexes entspricht der Erwartung, seine Metall—Metall-Bindung ist jedoch kürzer als der Durchschnittswert aus den entsprechenden Cr2- bzw. Ni2-Verbindungen. Bei dem Fe2-Komplex ist die Gesamt-Molekülgeometrie ebenfalls normal, doch der Metall—Metall-Abstand ist deutlich kürzer als erwartet. Die Verkürzung der Metall—Metall-Bindungen steht bei beiden Komplexen in Zusammenhang mit der Minimisierung der intramolekularen sterischen Hinderung. Stereochemistry of the Metal—Metal Bond. Structures of the Compounds (CO)4Cr[μ-PMe2]2Ni(CO)2 and (CO)3Fe[μ-PMe2, μ-I]Fe(CO)3. Each with Two Different Complex Halves The crystal structures of the title complexes, one of which has two different carbonylmetal units and the other has two different bridging ligands, were determined. The stereochemistry of the Cr? Ni complex is as expected, its metal—metal bond however is shorter than the average value of the corresponding Cr2 and Ni2 compounds. For the Fe2 complex the overall molecular geometry is also normal, but the metal—metal distance is considerably shorter than expected. The shortening of the metal—metal bonds is in both complexes correlated with the minimization of intramolecular steric strain. 相似文献
5.
6.
Sodium nitrosylcarbonyliron reacts with methylcyclopentadienylcarbonylmetal(Mo orW)chloride in CH_3OH/THF at room temperature to give CpMo(CO)_2NO(1a)(Cp=η~5-CH_3C_5H_4)or CpW(CO)_2NO(1b),[CpMo(CO)_3]_2(2a)or[CpW(CO)_3]_2(2b),and CpMo(μ3-NH)(μ2-NO)-(μ2-CO)Fe_2(CO)_6(3a)or CpW(μ3-NH)(μ2-NO)(μ2-CO)Fe_2(CO)_6(3b),respectively.Complexes1a,1b,3a and 3b were analyzed by IR,NMR,MS and elemental analyses,and the crystalstructures of 1b,3a and 3b were determined by X-ray diffraction method.The new clusters 3aand 3b have μ3-NH ligands which were formed by redaction of NO in the synthetic reactions. 相似文献
7.
8.
Reaction of the carbamoyl complex [C(NMe2)3][(CO)4FeC(O)NMe2] ( 1 ) with silver salts gives the dinuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 2 ). Depending on the solvent, crystals of 2a with an asymmetrical or of 2b with a symmetrical internal NH···O bridge are formed. The dimethylamino group is originated from a further molecule of 1 from which an amino group is transferred to the “α‐CO” ligand of an intermediate oxidation product while the H+ ion probably comes from deprotonation of a guanidinium cation. The HNMe2 ligand cannot be replaced by CO but easily by PPh3 to give [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(PPh3)] ( 3 ). All complexes were studied by X‐ray diffraction analyses and the usual spectroscopic methods. 相似文献
9.
Azido Derivatives of the Pentamethylcyclopentadienyl Vanadium(IV)-Fragment. Molecular Structures of the Binuclear Complexes [Cp*VCl(N3)(μ-N3)]2 and [Cp*V(N3)2(μ-N3)]2 The stepwise reaction of Cp*VCl3 with excess trimethylsilyl azide (Me3Si–N3) in solution leads to the paramagnetic, azido-bridged complexes [Cp*VCl2(μ-N3)]2 ( 3 ), [Cp*VCl(N3)(μ-N3)]2 ( 4 ) and [Cp*V(N3)2(μ-N3)]2 ( 5 ) which were characterized by their IR and mass spectra. The azide-rich binuclear complex 5 is also formed if a pentane solution of Cp*V(CO)4 is stirred in the presence of excess Me3Si–N3 in an open vessel. According to the X-ray structure analyses both 4 and 5 are centrosymmetric molecules with a planar V(N)2V four-membered ring. In the absence of free trimethylsilyl azide, solutions of 3 – 5 lose dinitrogen slowly; in the presence of traces of air, 5 is thereby converted to the diamagnetic, oxo-bridged complex [Cp*V(O)(N3)]2(μ-O) ( 6 ). 相似文献
10.
11.
[Fe2(μsb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2(μsb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields. 相似文献
12.
[Mo3,OS3(dtp)4(H2O)] reacts with NaOAc·3H2O in Py to give the title compound. The crystal data are as follows: [Mo2OS3)(OAc)2(dtp)2·Py]?0.5H,O(dtp = [S3P(OC2H5)2]?, Py = C5H5N); M = 976.64; triclinic; space group P1 ; a=11.704(5), b=14.169(7), c= 11.688 (5) Å α=109.94(4) β = 91.53(4), γ = 91.93(4)°; V= 1819(1) Å2; Z=2; Dc = 1.78 g·cm?3 λ(Mo Kα) = 0.71069 Å μ=15.15 cm?1; F(000) = 970 T=296 K; final R=0.071 for 1652 reflections with I>3σ(I). In the molecule, the [Mo3OS3] core is surrounded by two bridging OAc groups and two terminal chelate dtp groups attached to the {Mo3} triangle in a symmetric style, and the Py ligand is coordinated to the Mo atom at the apex of {Mo3} triangle with the nitrogen. This novel configuration is obtained for the first time with Mo—N bond length being 2.27 (2) Å and three Mo—Mo bond lengths 2.584 (4), 2.587 (4) and 2.657(4) Å, respectively. As a whole, the molecule has a virtual C2 symmetry. 相似文献
13.
14.
15.
New Azido Complexes of Tantalum(V). Synthesis and Molecular Structure of the Dinuclear Compounds [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) and [Cp*Ta(N3)3(μ‐N3)]2 (Cp* = Pentamethylcyclopentadienyl) The reaction of Cp*TaCl4 ( 1 ) with an excess of trimethylsilyl azide (Me3Si–N3) leads to azide‐rich dinuclear complexes which contain both terminal and bridging azido ligands. The oxo complex [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) ( 4 ) was formed in dichloromethane in the presence of traces of water, whereas [Cp*Ta(N3)3(μ‐N3)]2 ( 5 ) was obtained from boiling toluene after several days. According to the X‐ray structure determinations the Ta…Ta distance in 4 (314,5 pm) is considerably shorter than in 5 (382,2 pm). 相似文献
16.
The carbamoyl complex [C(NMe2)3][(CO)4Fe{C(O)NMe2}] ( 1 ) reacts with InMe3 under loss of the methyl groups to produce a variety of compounds from which only the anionic cluster complexes [C(NMe2)3]3[Fe2(CO)6(μ‐CO){μ‐InFe(CO)4(μ‐O2CNMe2)InFe(CO)4}] ([C N 3]3[ 2 ]) and [C(NMe2)3]2[{(CO)4Fe}2In(O2CNMe2)]·THF ([C N 3]2[ 3 ]·THF) could be crystallized and characterized by X‐ray analyses. The anion [ 2 ]3? has a Fe2(CO)9‐like structure and both anions contain the carbaminato ligand either in a bridging or in a chelating function. 相似文献
17.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b . 相似文献
18.
19.
Hans‐Christian Bttcher Marion Graf Kurt Merzweiler Christoph Wagner 《无机化学与普通化学杂志》2001,627(5):903-908
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)7(μ3‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3. 相似文献