首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ruthenium complexes containing 4,7-diphenyl-1,10-phenanthroline disulfonate (bathophenanthroline disulfonate; BPS) ligands, Ru(BPS)34−, Ru(BPS)2(bipy)2− and Ru(BPS)(bipy)2, were compared to tris(2,2′-bipyridine)ruthenium(II) (Ru(bipy)32+), including examination of the wavelengths of maximum absorption and corrected emission intensity, photoluminescence quantum yield, stability of their oxidised ruthenium(III) form, and relative chemiluminescence intensities and signal-to-blank ratios with cerium(IV) sulfate and six analytes (codeine, morphine cocaine, potassium oxalate, furosemide and hydrochlorothiazide) in acidic aqueous solution. The presence of BPS ligands in the complex increased the photoluminescence quantum yield, but decreased the stability of the oxidised form of the reagent. In contrast to previous evidence showing much greater electrochemiluminescence intensities using Ru(BPS)2(bipy)2− and Ru(BPS)(bipy)2, these complexes did not provide superior chemiluminescence signals than their homoleptic analogues.  相似文献   

2.
1H NMR titration and X-ray diffraction analysis revealed that [Ru(bipy)3]2+ forms an outer-sphere inclusion complex with p-sulfonatothiacalix[4]arene in a ratio of 1: 1 in both aqueous solutions and the solid state. According to cyclic voltammograms and fluorimetric data, the outer-sphere association of [Ru(bipy)3]2+ with p-sulfonatothiacalix[4]arene changes the reversible character of the electrochemical oxidation of [Ru(bipy)3]2+ and lowers its emission intensity. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1863–1870, September, 2008.  相似文献   

3.
Assimilation of open metal sites (OMSs) and free functional organic sites (FOSs) with a framework strut has opened up a new route for the fabrication of novel metal–organic materials, thereby providing a unique opportunity to explore their multiple functionalities. A new metal–organic framework (MOF), {[Cu(ina)2(H2O)][Cu(ina)2(bipy)]?2 H2O}n ( 1 ) (ina=isonicotinate, bipy=4,4′‐bipyridine), has been synthesized and characterized. Complex 1 is crystallized in the orthorhombic noncentrosymmetric space group Aba2 and consists of two different 2D coordination polymers, [Cu(ina)2(H2O)]n and [Cu(ina)2(bipy)]n, with entrapped solvent water molecules. Hydrogen‐bonding interactions assemble these two different 2D coordination layers in a single‐crystal structure with interdigitation of pendant 4,4′‐bipy from one layer into the groove of another. Upon removal of guest molecules, 1 undergoes a structural transformation in single‐crystal‐to‐single‐crystal fashion with expansion of the effective void space. Each metal center is five‐coordinated and thus can potentially behave as an OMS, and the free pyridyl groups of pendant 4,4′‐bipy moieties and free ? C?O groups can act as free FOSs. Thus, owing to presence of both OMSs and free FOSs, the framework exhibits multifunctional properties. Owing to the presence of OMSs, the framework can act as a Lewis acid catalyst as well as a small‐molecule sensor material, and in a similar way, owing to the presence of free FOSs, it performs as a Lewis base catalyst and a cation sensor material. Furthermore, owing to noncentrosymmetry with large polarity along a particular direction, it shows strong second‐harmonic generation/nonlinear optical (SHG‐NLO) activity.  相似文献   

4.
We have conducted a comprehensive comparative study of Ru(bipy)32+, Ru(bipy)2(phen)2+, Ru(bipy)(phen)22+, and Ru(phen)32+ as chemiluminescence and electrochemiluminescence (ECL) reagents, to address several previous conflicting observations and gain a greater insight into their potential for chemical analysis. Clear trends were observed in many of their spectroscopic and electrochemical properties, but the relative chemiluminescence or ECL intensity with a range of analytes/co-reactants is complicated by the contribution of numerous (sometimes opposing) factors. Significantly, the reversibility of cyclic voltammetric responses for the complexes decreased as the number of phenanthroline ligands was increased, due to the lower stability of their ruthenium(III) form in the aqueous solvent. This trend was also evident over a longer timescale when the ruthenium(III) form was spectrophotometrically monitored after chemical oxidation of the ruthenium(II) complexes. In general, the greater stability of Ru(bipy)33+ resulted in lower blank signals, although this effect was less pronounced with ECL, where the reagent is oxidised in the presence of the co-reactants. Nevertheless, this shows the need to compare signal-to-blank ratios or detection limits, rather than the more common comparisons of overall signal intensity for different ruthenium complexes. Furthermore, our results support previous observations that, compared to Ru(bipy)32+, Ru(phen)32+ provides greater ECL and chemiluminescence intensities with oxalate, which in some circumstances translates to superior detection limits, but they do not support the subsequent generalised notion that Ru(phen)32+ is a more sensitive reagent than Ru(bipy)32+ for all analytes.  相似文献   

5.
Three new complexes constructed by 1‐adamantaneacetic acid (HL), [Zn2L4]n ( 1 ), [MnL2(4,4′‐bipy)(H2O)2]n· 2n(HL) ( 2 ) and MnL2(2,2'‐bipy)(H2O)2 ( 3 ), have been hydrothermally synthesized. X‐ray single crystal diffraction analyses reveal that both 1 and 2 are infinite 1D chains along b axis. 2 and 3 have an octahedral coordination and show the supramolecular structures which are formed on the basis of the connectivity of intermolecular hydrogen bonds. The deprotonated L? ligands coordinate the M(II) atoms with many coordination modes in the title complexes.  相似文献   

6.
Complexes cis-[Ru(bpy)2(bipy)(X)] n + [bpy = 2,2'-bipyridyl, bipy = 4,4'-bipyridyl, X = Br-, ONO-, CN- (n = 1); MeCN, PPh3 (n = 2), and NO+ (n = 3)] were synthesized. Irradiation of acetonitrile solutions of the complexes with X = Cl-, Br-, ONO-, NO2-, CN-, NH3, MeCN, and PPh3 by visible light results in photosubstitution of 4,4'-bipyridyl by a solvent molecule. The electronic absorption spectra of the complexes were assigned on the basis of quantum-chemical calculations. A correlation was revealed between photolysis quantum yields and charges transferred from ligands X upon their coordination.  相似文献   

7.
Summary Using 1,2-naphthoquinone-1-oxime (HL) as the principal ligand, four mixed-ligand ruthenium oximate complexes - namely [Ru(bipy)2(L)]ClO4, [Ru(pap)2(L)]-ClO4, [Ru(bipy)(L)2] and [Ru(PPh3)2(L)2], where bipy = 2,2′-bipyridine and pap = 2-(phenylazo)pyridine- have been synthesized and characterized. In all these complexes, Ru exists in the +2 state. They are diamagnetic and, in solution, show several intense metal-to-ligand charge transfer (MLCT) transitions in the vis. region. In MeCN solution, all four complexes show a reversible RuII-RuIII oxidation on the positive side of a standard calomel electrode (s.c.e.), the potential of which varies with the compositions of the complexes. Reductions of the coordinated co-ligands (bipy or pap) are also observed.  相似文献   

8.
Using the principles of molecular self‐assembly, two novel zinc complexes {[Zn(phth)(bipy)(H2O)][Zn(phth)(bipy)]·H2O}n (1) and [Zn(1,2,4‐btc)(bipy)(H2O)·2H2O]n (2) were obtained by hydrothermal reaction of Zn(CH3COO)2·2H2O with phthalic acid (phth), 1,2,4‐benzenetricarboxylic acid (1,2,4‐btc) and 2,2′‐bipyridine (bipy) respectively, and characterized by single‐crystal X‐ray diffraction. The crystal structures reveal that both complexes form one‐dimensional chain structures, and the zinc ions are five‐coordinated; there are two types of metal environment in the structure of the complex 1. The photophysical properties have been investigated with fluorescence excitation and emission spectra. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Summary Thermal substitution of chloride in Ru(bipy)2Cl2 · 2H2O with diazadienes (dad) RN=CR-CR=NR yields the mixed [(bipy)2Ru(dad)]2+ complexes, which are analogous to the [Ru(bipy)3]22+ cation. Full n.m.r. assignments are given for several complexes; conformational rigidity is displayed by dad-attached phenyl groups in one of them. The u.v. spectra, which show dad-dependent first c.t.-absorption bands, are compared to that of [Ru(bipy)3]2+.Ruthenium Complexes with Diazadienes. Part I.,Transition Met. Chem., 6, 185 (1981).  相似文献   

10.
The crystal structure of [(C5H4BMe2)2Fe]‐4,4′‐bipyridine [ 2 · bipy]n has been determined by the method of simulated annealing from high resolution X‐ray powder diffraction at room temperature. The compound is of interest, because it proves that highly ordered organometallic macromolecules can be formed in the solid state via the self‐assembly of N–B‐donor‐acceptor bonds. [ 2 · bipy]n crystallizes in the triclinic space group, P 1, Z = 2, with unit cell parameters of a = 8.3366(2) Å, b = 11.4378(3) Å, c = 12.6740(5) Å, α = 112.065(2)°, β = 108.979(1)°, γ = 90.551(2)°, and V = 1047.06(6) Å3. For the structure solution of [ 2 · bipy]n 11 degrees of freedom (3 translational, 3 orientational, 5 torsion angles) were determined within several hours, demonstrating that the crystal packing and the molecular conformation of medium sized (< 50 non‐hydrogen atoms) coordination compounds can nowadays be solved routinely from high resolution powder diffraction data.  相似文献   

11.
The quenching of the luminescence intensity and lifetime of the electronically excited species Ru(bipy) 3 2+ by a series of copper (II) cyclodextrin complexes is studied. It is found that conventional Stern-Volmer behaviour is not followed. A modified version of the Stern-Volmer equation, one which assumes purely static quenching, is in good agreement with experimental data. Inclusion of the Ru(bipy) 3 2+ by the metallo-cyclodextrin complex is observed to play a key role in the quenching mechanism.  相似文献   

12.
Introduction of multiple kinetic aggregation states (Aggs) into the self-assembly pathway could bring complexity and flexibility to the self-assemblies, which is difficult to realize due to the delicate equilibria established among different Aggs bonded by weak noncovalent interactions. Here, we describe a series of chiral and achiral d10 AuI bis(N-heterocyclic carbene, NHC) complexes, and the achiral complex could undergo self-assembly with multiple kinetic Aggs. Generation of multiple kinetic Aggs was realized by applying chiral or achiral seeds exhibiting large differences in elongation temperatures for their respective cooperative self-assembly processes. We further showed that the chiral AuI self-assemblies having non-centrosymmetric packing forms exhibit nonlinear optical response of second harmonic generation (SHG), while the SHG signal is absent in the achiral analogue. The crystalline achiral AuI self-assemblies could function as optical waveguides with strong emission polarization.  相似文献   

13.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

14.
Summary Two stable monopicolinate complexes of ruthenium(II), [Ru(bipy)2(pic)]ClO4 and [Ru(pap)2(pic)]ClO4 [bipy = 2,2-bipyridine, pic = picolinate anion, pap = 2-(phenylazo)-pyridine], were prepared and characterized. The complexes are diamagnetic and behave as 1:1 electrolytes in MeCN solution. In the i.r. spectra, they show characteristic vibrations of bipy or pap, pic and ClO inf4 p– . In MeCN solution, both complexes display three intense absorption bands in the visible region, which have been assigned to metal-to-ligand charge-transfer transitions. Each complex shows a reversible ruthenium(II)-ruthenium(III) oxidation in MeCN, the formal potential (E inf298 p0 ) being 0.75 V versus a saturated calomel reference electrode (SCE) for [Ru-(bipy)2(pic)]+ and 1.44 V versus SCE for [Ru(pap)2(pic)]+. Multiple reductions of the coordinated bipy and pap ligands have also been observed.Author to whom all correspondence should be directed.  相似文献   

15.
This article describes the preparation and characterization of cis-[Ru(bipy)2L](ClO4)2 and trans-[RuCl2L2]?·?Cl (bipy?=?2,2′-bipyridyl and L?=?ortho-phenylenediamine (o-phd), 2-aminopyridine (2-apy) and 2-aminobenzonitrile (2-abn), and examines the catalytic oxidations of benzyl alcohol, benzohydrol and pipronyl alcohol by cis-[Ru(bipy)2 (o-phd)](ClO4)2 and trans-[RuCl2(o-phd)2]?·?Cl complexes at room temperature and in the presence of N-methyl morpholine-N-oxide (NMO) as co-oxidant.  相似文献   

16.
Three new complexes: [Cd(btaa)(bipy)(CH3COO) · H2O] n (1), [Ni(btaa)2(H2O)4 · 6H2O] n (2), and [Mn(btaa)2(H2O)2] n (3) (bipy = 2,2′-bipyridine, Hbtaa = 1H-benzotriazole-1-acetic acid) were prepared and characterized by IR, elemental analyses, thermogravimetric analyses, and single-crystal X-ray analyses. In 1, cadmium ions are linked by btaa ligands into 1-D linear chains; the chains are extended into layers through C–H ··· O hydrogen bonds and π–π stacking interactions. Complex 2 is a mononuclear structure, extended to a 3-D network through multiple intermolecular hydrogen bonds. In 3, manganese is bridged by carboxylate groups of btaa in the syn–skew bidentate mode in two directions to form a 2-D grid-like framework with a (4, 4) topology. The solid-state fluorescence spectrum of 1 shows that the excitation peak is at 355 nm while the maximum emission peak is at 424 nm.  相似文献   

17.
Mercury(II) complexes with 4,4′‐bipyridine (4,4′‐bipy) ligand were synthesized and characterized by elemental analysis, and IR, 1H‐ and 13C‐NMR spectroscopy. The structures of the complexes [Hg3(4,4′‐bipy)2(CH3COO)2(SCN)4]n ( 1 ), [Hg5(4,4′‐bipy)5(SCN)10]n ( 2 ), [Hg2(4,4′‐bipy)2(CH3COO)2]n(ClO4)2n ( 3 ), and [Hg(4,4′‐bipy)I2]n ( 4 ) were determined by X‐ray crystallography. The single‐crystal X‐ray data show that 2 and 4 are one‐dimensional zigzag polymers with four‐coordinate Hg‐atoms, whereas 1 is a one‐dimensional helical chain with two four‐coordinate and one six‐coordinate Hg‐atom. Complex 3 is a two‐dimensional polymer with a five‐coordinate Hg‐atom. These results show the capacity of the Hg‐ion to act as a soft acid that is capable to form compounds with coordination numbers four, five, and six and consequently to produce different forms of coordination polymers, containing one‐ and two‐dimensional networks.  相似文献   

18.
Abstract

The substitution behavior of the [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex in water with several bio-relevant ligands such as chloride, thiourea and N,N′-dimethylthiourea, was investigated and compared with the reactivity of the [RuII(terpy)(bipy)Cl]Cl and [RuII(terpy)(en)Cl]Cl (bipy =2,2′-bipyridine and en?=?ethylenediamine) complexes. Earlier results have shown that the reactivity and pKa values of Ru(II) complexes can be tuned by a systematic variation of electronic effects provided by bidentate spectator chelates. The reactivity of both the chlorido and aqua derivatives of the studied Ru(II) complexes increases in the order [RuII(terpy)(bipy)X]+/2+?<?[RuII(terpy)(ampy)X]+/2+?<?[RuII(terpy)(en)X]+/2+. This finding can be accounted for in terms of π back-bonding effects provided by the pyridine ligands. The activation parameters for all the studied reactions support an associative interchange substitution mechanism.  相似文献   

19.
Two new complexes [Sm(o‐NBA)3bipy]2·2H2O ( 1 ) and [Sm(o‐BrBA)3bipy]2·2H2O ( 2 ) (where o‐NBA is o‐nitrobenzoic acid, o‐BrBA is o‐bromobenzoic acid, and bipy is 2,2′‐bipyridine) were prepared and characterized by elemental analysis, IR, UV, and molar conductance, respectively. The thermal decomposition behaviors of the two complexes were investigated by means of TG–DTG and IR techniques. The thermal decomposition kinetics was studied by using advanced double equal‐double steps method, nonlinear integral isoconversional method, and nonlinear differential isoconversional method. The kinetic parameters of the second‐step process for the two complexes were obtained, respectively. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 607–616, 2008  相似文献   

20.
Two special manganese complexes [Mn(II)(acac?)2(4,4′‐bipy)]n (bipy=4,4′‐bipyridine) (complex 1 ) and [Mn(III)(acac?)3]·4CO(NH2)2 (acacH=acetylacetone) (complex 2 ) were synthesized in the same strategy by solvothermal method. Single crystal X‐ray diffraction revealed the complex 1 consists of one‐dimensional infinite coordination chain, with the manganese centers bridged by 4,4′‐bipy. And free carbamides of complex 2 connect with each other through the hydrogen bonds to form a 14‐membered carbamide ring and a zig‐zag plane. Both enantiomers of Mn(III)(acac?)3 exist in the structure, forming a racemate. Furthermore, these enantiomers and those zig‐zag planes are linked with hydrogen bonds to form an unique spatial network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号