首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

2.
The thermal isomerization of cis-hexatriene (cHT) to cyclohexadiene (CHD) and the dimerization of CHD and trans-hexatriene (tHT) in the liquid phase in the temperature range 380 K-473 K are reported. The rate coefficients are: for the cHT to CHD isomerization for tHT dimerizationlog and for CHD dimerization; endo form exo form © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The reactions have been studied competitively in the vapor phase over the range of 52–204°C. The i-C3F7 radicals were generated by means of the reaction It was found that where θ = 2.303RT J/mol. Absolute Arrhenius parameters are derived for the reactions where R = CF3, C2F5, and i-C3F7.  相似文献   

4.
The reactions where Y = CH3 (M), C2H5 (E), i? C3H7 (I), and t? C4H9 (T) have been studied between 488 and 606 K. The pressures of CHD ranged from 16 to 124 torr and those of YE from 57 to 625 torr. These reactions are homogeneous and first order with respect to each reagent. The rate constants (in L/mol·s) are given by The Arrhenius parameters are used as a test for a biradical mechanism and to discuss the endo selectivity of the reactions.  相似文献   

5.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

6.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

7.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

8.
The photolysis of cis-1,2-dichloroethylene has been investigated in the presence of I2 as a function of incident wavelength and as a function of initial cis pressure. The results indicate that at ± > 2200Å the following primary processes occur: The lifetime of the excited state yielding the above products is estimated at about 2.4×10?9 sec. At shorter wavelengths additional C2H2 is produced by decomposition of a vibrationally excited C2H2Cl radical. Scavenging of the CHClCH radical by I2 produced trans and cis-CHClCHl in a ratio of 4 to 1, respectively.  相似文献   

9.
Chloroethanes react with aqueous caustic to yield either elimination or substitution products. The reaction rates were measured for the dichloroethanes, trichloroethanes, tetrachloroethanes, and pentachloroethane between 283 and 353°K. The constants of HCl eleminations referring to the rate equation are given by all rate constants being in 1./mole·s and R in cal/mole· deg. With ethyl chloride, 1,1-dichloroethane, and 1,1,l-trichloroethane, the elimination is not observed and a slow substitution takes place. The influence of chlorine substituents on both sides of the molecule on mechanism and rate parameters is discussed.  相似文献   

10.
Tertiary-amyl amine has been decomposed in single-pulse shock-tube experiments. Rate expressions for several of the important primary steps are This leads to D(CH3? H) – D(NH2? H) = ?10.5 kJ and D[(CH3)3C? H] – D[(CH3)2NH2C? H] = + 6 kJ. The present and earlier comparative rate single-pulse shock-tube data when combined with high-pressure hydrazine decomposition results-(after correcting for fall off effects through RRKM calculations) gives where kr(…) is the recombination rate involving the appropriate radicals. This suggests that in this context amino radical behavior is analogous to that of alkyl radicals. If this agreement is exact, then Rate expressions for the primary step in the decomposition of a variety of primary amines have been computed. In the case of benzyl amine where data exist the agreement is satisfactory. The following differences in bond energies have been estimated:   相似文献   

11.
A transformation exists which allows the general Riccati equation to be written in a simpler form: The transformed equation has the equivalent nonlinear Hammerstein integral equation if the kernel N(r, r′) satisfies three conditions: and and A solution of the nonlinear integral equation is devised by repeatedly integrating the Hammerstein equation. During this procedure the kernel generates an equation that contains only coefficients of β(r)0 and β(r)1. As a result, after truncating at the end of the nth cycle, it is a simple matter to write down a Padé-type approximation: all coefficients in this approximation are capable of being evaluated in terms of simple algebraic formulations of P(r), R(r), and integrals over P(r). The zeroes of the denominator of the Padé-type approximation define the points where singularities occur in β(r).  相似文献   

12.
The thermal decomposition of diethyl ether was studied in the temperature range 697.2–760.5 K. The rate constant of reaction (1), and the ratio of the rate constant of reaction (2) to that of (12): were calculated from the amounts of products:   相似文献   

13.
The reversible thermal gas-phase dimerization of hexafluoropropene to the four isomeric cyclobutanes has been studied by pressure change and by gas-liquid chromatographic analysis in the temperature range of 645–708 K with initial pressures of olefin from 802 to 4820 mm Hg. The reaction was accurately second order at low conversions of olefin to dimers, and at higher conversions it gave a very good fit to the rate equation for opposing second- and first-order reactions. The rate constants for the dimerization, calculated from initial rates of reaction, yielded the least-mean-squares Arrhenius equation (95% confidence limits): where k2 is defined by Studies carried out in a packed vessel showed no evidence of heterogeneity. The rate constants found in this work are in excellent agreement with those found at lower pressures by Atkinson and Tsiamis, and the combined results give the Arrhenius equation   相似文献   

14.
The reversible isomerization of cis-hepta-1,3-diene to cis-2-trans-4-heptadiene via a 1,5 hydrogen shift has been investigated kinetically at nine temperatures in the range of 475° to 531°K. Equilibrium is reached near 94% reaction. Some cis-2-cis-4-heptadiene is also formed, but at a rate some 60 times slower than the cis,trans isomer. A least-squares analysis of the data yielded the Arrhenius equation for the isomerization of the cis-hepta-1,3-diene: Possible errors in the equilibrium constant measurements are discussed, and employing an equilibrium constant calculated by using group additivity estimates together with the values of k1, we obtained for the reverse reaction where .  相似文献   

15.
Deliberate activation of the reaction vessel surface leads to the domination of chain termination in ethane pyrolysis by the reaction As a result, chains are dramatically reduced in length, methane yields are entirely primary and larger in proportion to other products, and values of k1 can be directly determined from methane yield data without ambiguity. Experiments carried out in the temperature range of 841–913K at initial ethane pressures of 1–20 torr, without and with added nitrogen, yield the infinite pressure Arrhenius equation It is shown that most previously published data can be combined with those of this study to yield Fall-off curves for k1 as a function of pressure are in good agreement with those from other laboratories. From these the relevant data for k?1 can be extracted for use in other kinetic studies.  相似文献   

16.
A mixture of Br2 + HBr + C2F5I was photolyzed in the vapor phase. The reaction forms C2F5 radicals which are removed by Competitive studies over the range of 74–146°C gave ratios of k10/k9, and these were combined with values obtained previously by different methods at higher temperatures upto 515°C to give where θ = 2.303RT J/mol. A value is assigned to the activation energy E10, and this, with other data, leads to at 25°C. This result is in excellent agreement with two previous independent determinations.  相似文献   

17.
The kinetics of the thermal reaction between CF3OF and C3F6 have been investigated between 20 and 75°C. It is a homogeneous chain reaction of moderate length where the main product is a mixture of the two isomers 1-C3F7OCF3 (68%) and 2-C3F7OCF3 (32%). Equimolecular amounts of CF3OOF3 and C6F14 are formed in much smaller quantities. Inert gases and the reaction products have no influence on the reaction, whereas only small amounts of oxygen change the course of reaction and larger amounts produce explosions. The rate of reaction can be represented by eq. (I): The following mechanism explains the experimental results: Reaction (5) can be replaced by reactions (5a) and (5b), without changing the result: Reaction (4) is possibly a two-step reaction: For ∣CF3 = ∣C3F6∣, ν20°C = 36.8, ν50°C = 24.0, and ν70°C = 14.2.  相似文献   

18.
Rate constants have been determined at (298 ± 4) K for the reactions: and the relaxation processes: Time-resolved HF(1,0) emission was observed following the photolysis of F2 with pulses from an excimer laser operating on XeCl (λ = 308 nm). Analysis of the emission traces gave first-order constants for reaction and relaxation, and their dependence on [H2O] and [HCN] yielded:   相似文献   

19.
The overall reaction (1) occurs readily in the gas phase, even at room temperature in the dark. The reaction is much faster than the corresponding process and does not involve the normal bromination mechanism for gas phase reactions. Reaction (1) is probably heterogeneous although other mechanisms cannot be excluded. The overall reactions (1) (2) proceed, for all practical purposes, completely to the right-hand side in the vapor phase. The expected mechanism is (3) (4) (5) (6) (7) where reaction (3) is initiated thermally or photochemically. Reaction (4) is of interest because little kinetic data are available on reactions involving abstraction of halogen by halogen and also because an accurate determination of the activation energy E4 would prmit us to calculate an acccurate value of the bond dissociation energy D(CH3? I).  相似文献   

20.
The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products). The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases:   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号