首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Novel poly(amide-sulfonamide)s have been prepared by reacting terephthaloyl, isophthaloyl, and sebacoyl chloride with variously substituted dianilines containing preformed sulfonamide linkages. Inherent viscosities of the prepared polymers ranged from 0.19 to 0.58 dL/g. Despite low apparent viscosities, the polymers had film forming properties. Clear, tough, flexible films were obtained from the prepared polymers, in particular the poly(terephthalamide-sulfonamide)s. Glass transition temperatures, determined by differential scanning calorimetry, ranged from 84 to 247°C. Thermogravimetric analyses of the polymers showed that they have moderate thermal stability with weight losses ranging from 12 to 35% at 350°C.  相似文献   

3.
A series of novel poly(ester-imide)s were prepared by the reaction of meta- and para-substituted trimellitimide dicarboxylic diacid chlorides with various diols containing four, five, six, seven, eight, nine, 10, and 12 methylene groups by a solution polymerization technique utilizing refluxing 1,2,4-trichlorobenzene as a solvent. The poly(ester-imide)s were characterized by dilute solution viscosity, infrared spectroscopy, differential scanning calorimetry, and polarized light microscopy. The inherent viscosities of the meta-substituted poly(ester-imide)s ranged from 0.06 to 0.25 dL/g while those of the para-substituted poly(ester-imide)s ranged from 0.10 to 0.65 dL/g and were obviously of higher molecular weight. The meta series were amorphous and showed no mesophase formation. All para-substituted poly(ester-imide)s exhibited monotropic mesophase identified as smectic A order. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Eight poly(urethane-sulfone)s were synthesized from two sulfone-containing diols, 1,3-bis(3-hydroxypropylsulfonyl)propane (Diol-333) and 1,4-bis(3-hydroxypropylsulfonyl)butane (Diol-343), and three diisocyanates, 1,6-hexamethylene diisocyanate (HMDI), 4,4′-diphenylmethane diisocyanate (MDI), and tolylene diisocyanate (TDI, 2,4- 80%; 2,6-20%). As a comparison, eight polyurethanes were also synthesized from two alkanediols, 1,9-nonanediol and 1,10-decanediol, and three diisocyanates. Diol-333 and Diol-343 were prepared by the addition of 1,3-propanedithiol or 1,4-butanedithiol to allyl alcohol and subsequent oxidation of the resulting sulfide-containing diols. The homopoly(urethanesulfone)s from HMDI and MDI are semicrystalline, and are soluble in m-cresol and hot DMF, DMAC, and DMSO. The copoly(urethane-sulfone)s from a 1/1 molar ratio mixture of Diol-333 and Diol-343 with HMDI or MDI have lower crystallinity and better solubility than the corresponding homopoly(urethane-sulfone)s. The poly(urethane-sulfone)s from TDI are amorphous, and are readily soluble in m-cresol, DMF, DMAC, and DMSO at room temperature. Differential scanning calorimetry data showed that poly(urethane-sulfone)s have higher glass transition temperatures and melting points than the corresponding polyurethanes without sulfone groups. The rise in glass transition temperature is 20–25°C while the rise in melting temperature is 46–71°C. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
A series of new poly(arylene ether)s, containing naphthalene, pyridine, and quinoline units have been prepared by solution condensation polymerization. The synthesis involves nucleophilic displacement of aromatic dihalides with aromatic potassium bisphenates in an anhydrous dipolar aprotic solvent at elevated temperatures. The polymers, having inherent viscosity from 0.24 to 1.32 dL/g, were obtained in quantitative yield, have excellent thermal stability as shown by 10% weight loss temperatures in nitrogen and air (above 450 and 430°C, respectively) and high glass transition temperatures (in the range of 150–220°C). The introduction of quinoline moieties in the polymer backbone positively influences the thermal properties, such as high Tg/Tm ratios. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
7.
Aliphatic and aromatic-aliphatic poly(ester-sulfone)s were synthesized by the transesterifications of diphenyl adipate and diphenyl phthalates (ortho, meta, para) with two sulfonecontaining diols, 1,3-bis (3-hydroxypropylsulfonyl) propane (Diol-333) and 1,4-bis(3-hydroxypropylsulfonyl) butane (Diol-343). Based on DSC and WAXD studies, the aliphatic homopoly(ester-sulfone)s are semicrystalline at room temperature and liquid crystalline at elevated temperature, while their copolymers with alkanediols are liquid crystalline. The liquid crystalline phase formation in aliphatic poly(ester-sulfone)s is attributed to the strong dipole-dipole interactions between sulfone groups. The aromatic-aliphatic poly(estersulfone)s from diphenyl phthalate (ortho) and isophthalate (meta) are amorphous. They are soluble in trifluoroacetic acid and m-cresol at room temperature, and DMF, DMAC, and DMSO at elevated temperature. The aromatic-aliphatic poly(ester-sulfone)s from diphenyl terephthalate are semicrystalline and are soluble only in trifluoroacetic acid. For a given diol, the glass transition temperatures of aromatic-aliphatic poly(ester-sulfone)s increase from phthalate to isophthalate to terephthalate. This is because the flexibility of the benzene ring in the polymer backbone decreases from ortho to meta to para substitution. As a comparison, polyesters without sulfone groups were synthesized from two alkanediols, 1,9-nonanediol and 1,10-decanediol, and the diphenyl esters. The poly(ester-sulfone)s have glass transition temperatures 60–80°C higher than the corresponding polyesters without sulfone groups, due to the strong dipolar interactions between sulfone groups. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
A new monomer di(4‐carboxyphenoxy) tetrakis(4‐fluorophenoxy)cyclotriphosphazene 1 was synthesized in a two‐step reaction sequence. The direct polycondensation of 1 and/or 4,4′‐dicarboxydiphenylether with aromatic ethers was carried out in P2O5/methanesulfonic acid (Eaton's reagent) at 120 °C for 3 h to give two series of aromatic poly(ether ketone)s containing cyclotriphosphazene units. The effect of the introduction of the cyclotriphosphazene group on the solubility and thermal properties of these polymers was discussed with relation to the cyclotriphosphazene contents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2300–2305, 2000  相似文献   

9.
Two kinds of novel aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 3-amino-4′-(4-aminophenoxy)-benzophenone, was successfully synthesized by two different synthetical routes and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride, via a conventional two-step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, mechanical properties tests, IR-FT, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.54-0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low-boiling-point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 10% weight loss) above 573 °C and glass-transition temperatures in the range of 222-251 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 86.5-121.6 MPa, elongations at break of 9-16%, and initial moduli of 1.26-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.  相似文献   

10.
以无水AlCl3/ClCH2CH2Cl/NMP为催化剂/溶剂体系,由4,4'-二(α-萘氧基)二苯酮(DNBP),4、4'-二苯氧基二苯酮(DPOBP)和对苯二甲酰氯(TPC)通过低温溶液共缩聚反应,合成了一系列聚醚酮醚酮酮(PEKEKK)/含萘环聚醚酮醚酮酮无规共聚物。考察了单体浓度,反应时间对聚合物分子量的影响,并对其进行了IR、DSC、TG、XRD等表征。  相似文献   

11.
Several aromatic mono- and dicyanate monomers bearing ether and ketone groups in the main chain have been synthesized through high-yield reactions widely used in organic chemistry. FT-IR and NMR were used to characterize these monomers and the intermediate products. The cyclotrimerization reaction was studied by DSC in monocyanate models, and the enthalpy of the reaction was determined. The value obtained was approximately 95 kJ/mol of cyanate irrespective of the substituent and symmetry of the substitution. For short dicyanates, cyclotrimerization did not reach completion, and for long dicyanates, the enthalpy of reaction could not be evaluated with accuracy. The resulting cured polycyanurates networks, due to the selectivity of the cyclotrimerization reaction, could be considered as true fully aromatic crosslinked poly(ether ketone)s with controlled structure. Tg values of the networks were above 180°C. The higher values were found for shorter dicyanates and for monomers with para substitution. The 1% and 5% weight loss values in nitrogen were above 310 and 380°C, respectively, with char yields in the range 50–60%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3155–3168, 1999  相似文献   

12.
New thioether- and thianthrene-containing poly(benzoxazole)s (PBOs) were synthesized from 4,4′-thiobis[3-chlorobenzoic acid] and thianthrene-2,7- and -2,8-dicarbonyl chlorides with commercially available bis-o-aminophenols. Polymers were prepared via solution polycondensation in poly(phosphoric acid) at 90–200°C. Transparent PBO films were cast directly from polymerization mixtures or m-cresol. The films were flexible and tough. Non-fluorinated PBOs were soluble only in strong acids and AlCl3/NO2R systems by forming complexes with the benzoxazole heterocycle Glass transition temperatures ranged from 298–450°C, and thermogravimetric analysis showed good thermal stabilities in both air and nitrogen atmospheres. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
A series of new poly(ether imide)s containing the naphthalimide moiety were prepared from bis(4-fluorobenzoyl)naphthalimides and several bisphenols by aromatic nucleophilic displacement polymerization. These polyimides had inherent viscosities in the range of 0.31–1.04 dL/g in chloroform and glass transition temperatures of 283.0–341.6°C by differential scanning calorimetry. The onset temperature for 5% weight loss for all the polymers was over 448°C, as assessed by thermogravimetry at a heating rate 10°C/min in nitrogen. In addition, these novel polyimides exhibited good solubility in organic solvents including N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, 1,1,2,2-tetrachloroethane and chloroform. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3227–3231, 1999  相似文献   

14.
15.
Four different fluorinated methyl‐ and phenyl‐substituted 4‐(4‐hydroxyphenyl)‐2‐(pentafluorophenyl)‐phthalazin‐1(2H)‐ones, AB‐type phthalazinone monomers, have been successfully synthesized by nucleophilic addition–elimination reactions of methyl‐ and phenyl‐substituted 2‐((4‐hydroxy)benzoyl)benzoic acid with 1‐(pentafluorophenyl)hydrazine. Under mild reaction conditions, the AB‐type monomers underwent self‐condensation polymerization reactions successfully and gave fluorinated poly(phthalazinone ether)s with high molecular weights. Detailed structural characterization of the AB‐type monomers and fluorinated polymers was determined by 1H NMR, 19F NMR, FTIR, and GPC. The solubility, thermal properties, mechanical properties, water contact angles, and optical absorption of the polymers were evaluated. The polymers had high Tgs varying from 337 to 349 °C and decomposition temperatures (Td, 25 wt %) above 409 °C. Tough, flexible films were cast from THF and chloroform solutions. The films showed excellent tensile strengths ranging from 70 to 85 MPa with good hydrophobicities with water contact angles higher than 95.5 °C. The polymers had absorption edges below 340 nm and very low absorbance per cm at higher wavelengths 500–2500 nm. These results indicate that the polymers are promising as high performance materials, for example, membranes and hydrophobic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1761–1770  相似文献   

16.
Maleic and citraconic anhydrides were reacted with several diamines to obtain a novel class of high temperature resistant bisimides.1–3 The bisimides were characterized by melting points, elemental analysis, UV–Vis, 1H- and 13C-NMR, and mass spectral analysis. The bisimide monomers were then polymerized by the addition process. A poly(amidemaleimide) was also synthesized by reacting maleic anhydride with p-aminobenzhydrazide. The thermal stability of these highly crosslinked poly(bisimide)s were examined by TGA and DTA. A neat bisimide monomer obtained from 2,2′-bis[4(p-aminophenoxy)phenyl] propane with maleic anhydride namely, 2,2′-bis[4-(p-maleimidophenoxy)phenyl]propane was reacted with 2,2′-bis[4(p-aminophenoxy)phenyl]propane by the Michael reaction.4 A fiber glass cloth reinforced laminate was prepared from bismaleimide and amine mixture and the mechanical properties of the test laminate evaluated.  相似文献   

17.
Four novel conjugated polymers containing the eumelanin‐inspired indole core have been successfully synthesized using common cross coupling reactions. These polymers differed by the arylene and the carbon–carbon bond linkage. Optoelectronic experiments of these polymers suggest that the ethynylene linkage contributed to the red‐shifted absorption spectra and blue‐shifted emission spectra when compared to the vinylene linkage polymers. Furthermore, the optical bandgaps of the poly(indoylenearyleneethynylene)s (PIAEs) were smaller compared to the poly(indoylenearylenevinylene)s (PIAVs). Surprisingly, the HOMOs of these polymers were less affected by the nature of the carbon–carbon linkage. However, the LUMOs of the PIAEs were lower in comparison to the PIAVs. These eumelanin‐inspired PIAEs and PIAVs are good fluorophores with fluorescence quantum yields ranging from 0.12 to 0.67 and have good thermal stability for applications such as in organic light‐emitting diodes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 457–463  相似文献   

18.
New diamino monomers IIa – IIg were synthesized in a two-step reaction sequence starting from p-acetamidobenzenesulfonyl chloride. Solution polymerization of these monomers in DMAC with terephthaloyl or isophthaloyl chloride resulted in the formation of a series of 14 poly(amide sulfonamide)s (PASAs) in excellent yield (> 95%). The polymers have in-trinsic viscosities of 0.32–1.11 dL g?1. Except for polymers IIIa ? p and IIId - p , all other PASAs were readily soluble in aprotic polar solvents including DMAC, DMF, and DMSO. Thermogravimetric analyses of the polymers showed moderate thermal stability with 10% weight loss being recorded in the range of 325–408°C. In addition, these polymers exhibit moderate chemical stabilities toward alkali, acidic, and chromic acid solution. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
New well-defined telechelic poly(phenyleneoxide)s (PPO's) were synthesized from 4-bromo-2,6-dimethylphenol and bi-phenolic compounds through phase transfer catalyzed aromatic nucleophilic substitution polymerization. Bisphenol-A (BPA), 4,4-biphenol (BP), hydroquinone (HQ) and 2,6-dihydroxynaphthalene (DHN) were employed as telechelic units. The composition analysis by proton-nuclear magnetic resonance (1H-NMR) spectroscopy revealed that DHN was highly reactive compared to BPA and HQ, whereas BP was un-reactive in the polymerization process. The number average repeating unit (n) in telechelic PPO was estimated as n=17-19 and n=17-20 for DHN and BPA (or HQ), respectively. The reactivity of the bi-phenolic in PPO synthesis are confirmed as DHN > HQ ∼ BPA ? BP. The molecular weight determination by gel permeation chromatography (GPC) and viscosity method suggest that the molecular weight of PPO decreased drastically with increasing amount of bi-phenolic units in the feed. The GPC chromatogram of PPO showed a bi-modal distribution, clearly indicative of formation of two different types of molecular weight chains, whereas the telechelic polymers have a mono-modal distribution with a narrow polydispersity. Thermal analysis by differential scanning calorimetry revealed that telechelic polymers are highly amorphous, like PPO, and no crystallization or melting peaks were observed in the heating/cooling cycles.  相似文献   

20.
Calcium containing poly(urethane-ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate or toluylene 2,4-diisocyanate (HMDI or TDI) with a mixture of calcium salt of mono(hydroxybutyl)phthalate [Ca(HBP)2] and polyethylene glycol (PEG200 or PEG400). A series of calcium containing PUEs having different composition were synthesized by taking the mole ratio of Ca(HBP)2:PEG200 or PEG400:diisocyanate (HMDI or TDI) as 3:1:4, 2:2:4 and 1:3:4 to study the effect of calcium content on the properties of the copolymer. The structure of the polymers were confirmed by IR, 1H-NMR, 13C-NMR, and solid state 13C-CP-MAS NMR. The polymers were soluble in dimethyl sulfoxide and dimethyl formamide. The initial decomposition temperature of the polymers decreases with increase in calcium content. The Tg value of PUEs increases with increase in calcium content and decreases with increase in soft segment content and length. A single Tg value is observed for the calcium containing PUEs based on PEG200 shows the presence of homogeneous phase. However, two Tg values for the PUEs based on PEG400 for various composition of Ca(HBP)2, PEG400 and diisocyanate (HMDI or TDI) shows the presence of heterogeneous phase. The viscosity of the calcium containing PUEs increases with increase in the soft segment content as well as its length and decreases with increase in calcium content. X-ray diffraction patterns of the polymers show that the HMDI based polymers are partially crystalline and TDI based polymers are amorphous in nature. The dynamic mechanical analysis of the calcium containing PUEs based on HMDI shows that at any given temperature modulus (g and g) increases with increase in the ionic content in the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号