首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
It is proposed to study the influence of interresidue H-bonds on the structure and properties of polysaccharides by comparing them to a series of systematically modified oligosaccharide analogues where some or all of the glycosidic O-atoms are replaced by buta-1,3-diyne-1,4-diyl groups. This group is long enough to interrupt the interresidue H-bonds, is chemically versatile, and allows a binomial synthesis. Several approaches to the simplest monomeric unit required to make analogues of cellulose are described. In the first approach, allyl α-D -galactopyranoside ( 1 ) was transformed via 2 and the tribenzyl ether 3 into the triflate 4 (Scheme 2). Substitution by cyanide (→ 5–7 ) followed by reduction with DIBAH led in high yield to the aldehyde 9 , which was transformed into the dibromoalkene 10 and the alkyne 11 following the Corey-Fuchs procedure (Scheme 3). The alkyne was deprotected via 12 or directly to the hemiacetal 13 . Oxidation to the lactone 14 , followed by addition of lithium (trimethylsilyl)acetylide Me3SiC?CLi/CeCl3 (→ 15 ) and reductive dehydroxylation afforded the disilylated dialkyne 16 . The large excess of Pd catalyst required for the transformation 11 → 13 was avoided by deallylating the dibromoalkene 10 (→ 17 → 18 ), followed by oxidation to the lactone 19 , addition of Me3SiC?CLi to the anomeric hemiketals 20 (α-D /β-D 7:2), dehydroxylation to 21 , and elimination to the monosilylated dialkyne 22 (Scheme 3). In an alternative approach, treatment of the epoxide 24 (from 23 ) with Me3SiC?CLi/Et2AlCl according to a known procedure gave not only the alkyne 27 but also 25 , resulting from participation of the MeOCH2O group (Scheme 4). Using Me3Al instead of Et2AlCl increased the yield and selectivity. Deprotection of 27 (→ 28 ), dibenzylation (→ 29 ), and acetolysis led to the diacetate 30 which was partially deacetylated (→ 31 ) and oxidized to the lactone 32 . Addition of Me3SiC?CLi/TiCl4 afforded the anomeric hemiketals 33 (α-D /β-D 3:2) which were deoxygenated to the dialkyne 34 . This synthesis of target monomers was shortened by treating the hydroxy acetal 36 (from 27 ) with (Me3SiC?C)3Al (Scheme 5): formation of the alkyne 37 (70%) by fully retentive alkynylating acetal cleavage is rationalised by postulating a participation of HOC(3). The sequence was further improved by substituting the MeOCH2O by the (i-Pr)3SiO group (Scheme 6); the epoxide 38 (from 23 ); yielded 85% of the alkyne 39 which was transformed, on the one hand, via 40 into the dibenzyl ether 29 , and, on the other hand, after C-desilylation (→ 41 ) into the dialkyne 42 . Finally, combined alkynylating opening of the oxirane and the 1,3-dioxolane rings of 38 with excess Et2Al C?CSiMe3 led directly to the monomer 43 which is thus available in two steps and 77% yield from 23 (Scheme 6).  相似文献   

2.
Dialkynes of the type 3 (Scheme 1) are regioselectively deprotected by treating them either with base in a protic solvent (→ 4 ), or– after exposing the OH group– by catalytic amounts of base in an aprotic solvent (→ 5 and 8 ). The Me3Si-protected 12 (Scheme 2) is inert to catalytic BuLi/THF which transformed 11 into 9 , while K2CO3/MeOH transformed both 10 into 9 , and 12 into 13 , evidencing the requirement for a more hindered (hydroxypropyl)silyl substituent. C-Silylation of the carbanions derived from 17–19 (Scheme 3) with 15 led to 20–22 , but only 22 was obtained in reasonable yields. The key intermediate 27 was, therefore, prepared by a retro-Brook rearrangement of 23 , made by silylating the hydroxysulfide 16 with 15 . The OH group of 27 was protected to yield the {[dimethyl(oxy)propyl]dimethylsilyl}acetylenes (DOPSA's) 21, 28 , and 29 . The orthogonally protected acetylenes 20–22, 28 , and 29 were de-trimethylsilylated to the new monoprotected acetylene synthons 30–34 . The scope of the orthogonal protection was checked by regioselective deprotection of the dialkynes 39–42 (Scheme 4), prepared by alkylation of 35 (→ 39 ), or by Pd0/CuI-catalyzed cross-coupling with 36–38 (→40–42 ). The cross-coupling depended upon the solvent and proceeded best in N,N,N′,N′ -teramethylethylenediamine (TMEDA). Main by-product was the dimer 43 . On the one hand, K2CO3/MeOH removed the Me3Si group and transformed 39–42 into the monoprotected 44–47 ; catalytic BuLi/THF, on the other hand, transformed the alcohols 48–51 , obtained by hydrolysis of 39–42 , into the monoprotected dialkynes 52–55 , all steps proceeding in high yields. Addition of the protected DOPSA groups to the lactones 56 (→57–59 ) and 62 (→63 ) (Schemes 5 and 6) gave the corresponding hemiketals. Reductive dehydroxylation of 57 and 58 failed; but similar treatment of 59 yielded the alcohol 61 . Similarly, 63 was transformed into 64 which was protected as the tetrahydropyranyl (Thp) ether 65 . In an optimized procedure, 62 was treated sequentially with lithiated 31 , BuLi, and Me3SiCl (→ 66 ), followed by desilyloxylation to yield 60% of 67 , which was protected as the Thp ether 68 . Under basic, protic conditions, 68 yielded the monoprotected bisacetylene 69 ; under basic, aprotic conditions, 67 led to the monoprotected bisacetylene 70 . These procedures are compatible with the butadiynediyl function. The butadiyne 73 was prepared by cross-coupling the alkyne 69 and the iodoalkyne 71 (obtained from 70 , together with the triiodide 72 ) and either transformed to the monosilylated 76 or, via 77 , to the monosilylated 78 . Formation of the homodimers 74 and 75 was greatly reduced by optimizing the conditions of cross–coupling of alkynes.  相似文献   

3.
Furanoid and pyranoid glyconothio-O-lactones were prepared by photolysis of S-phenacyl thioglycosides or by thermolysis of S-glycosyl thiosulfinates, which gave better results than the thionation of glyconolactones with Lawesson's reagent. Thermolysis of the thiosulfinates obtained from the dimannofuranosyl disulfide 7 or the manofuranosyl methly disulfide 8 (Scheme 2) gave low yields of the thio-O-lactone 2 . However, photolysis of the S-phenacyl thioglycoside 6 obtained by in situ alkylation of the thiolato anion derived from 5 led in 78–89% to 2 . Similarly, the dithiocarbonate 10 was transformed, via 11a , into the ribo-thio-O-lactone 12 (79%). Thermolysis of the peracetylated thiosulfinates 14 (Scheme 3) led to the intermediate thio-O-lactone 15 , which underwent facile β-elimination of AcOH (→ 16 , 75%) during chromatography. The perbenzylated S-glucopyranosyl dithiocarbonate 18 (Scheme 4) was transformed either into the S-phenacyl thioglucoside 19 or into a mixture of the anomeric methyl disulfides 21a/b . Whereas the photolysis of 19 led in moderate yield to 2-deoxy-thio-O-lactone 20 , oxidation of 21b and thermolysis of resulting thiosulfinates gave the thio-O-lactone 4 (79%), which was transformed into 20 (36%) upon photolysis. The pyranoid manno-thio-O-lactone 26 was prepared in the same way and in good yields from 22 via the dithiocarbonate 24b and the disulfide 25 . The ring conformations of the δ-thio-O-lactones, flattened 4C1 for 15 and 4 and B2,5 for 26 , are similar to the ones of the O-analogous oxo-glyconolactones. The reaction of 2 (Scheme 5) with MeLi and then with MeI gave the thioglycoside 27 (29%) and the dimeric thio-O-lactone 29 (47%). The analogous treatment of 2 with lithium dimethylcuprate (LiCuMe2) and MeI led to a 4:1 mixture (47%) of 31 and 27 . The structure of 2 was proven by an X-ray analysis, and the configuration at C(6) and C(5) of 29 was deduced from NOE experiments. Substitution of MeI by CD3I led to the CD3S analogues of 27 , 29 , and 31 , i.e. 28 , 30 , and 32 , respectively, evidencing carbophilic addition and ‘exo’-attack on 2 by MeLi and the enethiolato anion derived from 2 . The preferred ‘endo’-attack of LiCuMe2 is rationalized by postulating a single-electron transfer and a diastereoselective pyramidalization of the intermediate radical anion.  相似文献   

4.
Glycosylsulfenyl snf (Glycosylthio) sulfenyl Halides (Halogeno and Halogenothio 1-Thioglycosides, Resp.): Preparation and Reaction with Alkenes The disulfides 11–17 and 20 were prepared from 7, 9 , and 18 via the dithiocarbonates 8, 10 , and 19 , respectively (Scheme 2). The structure of 11 and of 13 was established by X-ray analysis. Chlorolysis (SO2Cl2) of 11 gave mostly the sulfenyl chloride 24 , characterized as the sulfenamide 26 , a small amount of 21 , characterized as the (glycosylthio)sulfenamide 23 , and the glycosyl chloride 27 (Scheme 3). Bromolysis of 11 followed by treatment of the crude with PhNH2 yielded only 28 . Chlorolysis of the diglycosyl disulfide 13 , however, gave mostly the (glycosylthio)sulfenyl chloride 21 and 27 , besides 24 . Bromolysis of 13 (→ 22 and traces of 25 ) followed by treatment with PhNH2 gave an even higher proportion of 23 . Similarly, 20 led to 29 and hence to 30 . In solution (CH2Cl2), the sulfenyl chloride 24 decomposes faster than the (thio)sulfenyl chloride 21 , and both interconvert. Addition of crude 24 to styrene (?78°) yielded the chloro-sulfide 31 and some 37 , both in low yields. The product of the addition of 24 to l-methylcyclohexene was transformed into the triol 32 . Silyl ethers of allylic alcohols reacted with 24 only at room temperature, yielding, after desilylation, isomer mixtures 33 and 34 , and pure 35 . Much higher yields were achieved for the addition of (thio)sulfenyl halides yielding halogeno-disulfides. Good diastereoselctivites were only obtained with 21 , its cyclohexylidene-protected analogue, and 22 , and this only in the addition to styrene (→ 36, 37, 38 ), to (E)-disubstituted alkenes (→ 46, 48, 49a/b, 50a/b, 53 ), and to trisubstituted alkenes (→ 47, 51, 52, 54, 55 ). Other monosubstituted alkenes (→ 41–45 ) and (Z)-hex-2-ene (→ 49c/d,50c/d ) reacted with low diastereoselectivities. Where structurally possible, a stereospecific trans-addition was observed; regioselectivity was observed in the addition to mono- and trisubstituted alkenes and to derivatives of allyl alcohols. The absolute configuration of the 2-chloro-disulfides was either established by X-ray analysis ( 47a ) or determined by transforming (LiAlH4) the chloro-disulfides into known thiiranes (Scheme 5). Thus, 37, 48 , and the mixture of 49a/b and 50a/b gave the thiiranes 56, 61 , and 64 , respectively, in good-to-acceptable yields (Scheme 5). Harsher conditions transformed 56 into the thiols 57 and 58 . Similarly, 61 gave 62 . The enantiomeric excesses of these thiols were determined by GC analysis of their esters obtained with (?)-camphanoyl chloride. Addition of 21 to {[(E)-hex-2-enyl]oxy}trimethylsilane, followed by LiAlH4 reduction and desilylation, gave the known 66 (63%, e.e. 74%). The diastereoselectivity of the addition of 21 to trans-disubstituted and trisubstituted alkenes is rationalized by assuming a preferred conformation of the (thio)sulfenyl chloride and destabilizing steric interactions with one of the alkene substituents, while the diastereoselectivity of the addition to styrene is explained by postulating a stabilizing interaction between the phenyl ring and the C(1)–S substituent (Fig.4).  相似文献   

5.
The synthesis of the phospha analogue 10 of DANA ( 2 ) is described. Bromo-hydroxylation of the known 11 (→ 12 and 13 ) followed by treatment of the major bromohydrin 13 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) gave the oxirane 14 (Scheme 1). Depending on the solvent, TiBr4 transformed 14 into 16 or into a 15 / 16 mixture. Reductive debromination of 16 (→ 17 ), followed by benzylation provided 18 . Oxidattve decarboxylation (Pb(OAc)4) of the acid, obtained by saponification of 18 , yielded the anomeric acetates 19 and 20 . While 19 was inert under the conditions of phosphonoylation, the more reactive imidate 22 , obtained together with 23 from 19 / 20 via 21 (Scheme 2), gave a mixture of the phosphonates 24 / 25 and the bicyclic acetal 26 . Debenzylation of 24 / 25 and acetylation led to the acetoxyphosphonates 27 / 28 . Since β-elimination of AcOH from 27 / 28 proved difficult, the bromide 34 was prepared from 27 / 28 by photobromination and subjected to reductive elimination with Zn/Cu (→ 35 ; Scheme 3). This two-step sequence was first investigated using the model compounds 30 and 31 . Transesterification of 35 , followed by deacetylation gave 10 , which is a strong inhibitor of the Vibrio Cholerae sialidase.  相似文献   

6.
NaSMe in toluene leads to regioselective de-C-silylation of the bis[(trimethylsilyl)ethynyl]saccharide 2 , but to decomposition of butadiynes such as 1 or 12 . We have, therefore, combined the known reagent-controlled, regioselective desilylation of 2 and of 12 (AgNO2/KCN) with a substrate-controlled regioselective de-C-silylation, based on C-silyl groups of different size. This combination was studied with the fully protected 3 which was mono-desilylated to 4 or to 5 (Scheme 1). Triethylsilylation of 5 (→ 6 ) was followed by removal of the Me3Si group (→ 7 ), introduction of a (t-Bu)Me2Si group (→ 8 ) and removal of the Et3Si group yielded 9 ; these high-yielding transformations proceed with a high degree of selectivity. Iodination of 4 gave 10 . The latter was coupled with 5 to the homodimer 11 and the heterodimer 12 , which was desilylated to 13 . The second building block for the tetramer was obtained by coupling 14 (from 7 ) with 5 , leading to 15 and 16 . Removal of the Me3Si group (→ 17 ) and iodination led to 18 which was coupled with 13 to the homotetramer 20 and the heterotetramer 19 (Scheme 2). Deprotection of 19 gave 21 , which was, on the one hand, iodinated to 22 , and, on the other hand, protected by the (t-Bu)Me2Si group (→ 23 ). Removal of the Et3Si group (→ 24 ) and coupling afforded the homooctamer 26 and the heterooctamer 25 . Yields of iodination, silylation, and desilylation were consistently high, while heterocoupling proceeded in only 50–55%. Cleavage of the (i-Pr)3SiC and MeOCH2O groups of 11 (→ 27 ), 15 (→ 28 ), 20 (→ 29 ) and 26 (→ 30 ) proceeded in high yields (Scheme 3). Complete deprotection in two steps of the heterocoupling products 16 (→ 31 → 32 ), 19 (→ 33 → 34 ), and 25 (→ 35 → 36 ) gave the unprotected dimer 32 , tetramer 34 , and octamer 36 in high yields (Scheme 4). Only the dimer 32 is soluble in H2O; the 1H-NMR spectra of 32 , 34 , and 36 in (D6)DMSO (relatively low concentration) show no signs of association.  相似文献   

7.
The previously prepared disaccharide 2 was deprotected (→ 3 ) and transformed into the trichloroacetimidate 4 . In the presence of Me3SiOTf, 4 reacted regioselectively with the racemic allosamizoline benzyl ether 5 , to yield (61%) the pseudotrisaccharides 7–10 (44:40:9:7) and the elimination product 6 (Scheme 1). Selective dephthaloylation (MeNH2, MeOH) of 7 and 8 , followed by acetylation, gave 12 (73%) and 13 (74%), respectively (Scheme 2); harsher conditions (NH2NH2.H2O, EtOH, reflux), followed by acetylation, transformed 7 into 11 . Deacetylation of 11–13 yielded 14–16 , respectively. Allosamidin ( 1 ) was obtained in high yield by hydrogenation of 15 under acidic conditions (Scheme 3). Similarly, 16 and 14 were transformed into 17 and 18 , respectively. Preliminary data on the inhibition of endochitinases by 1 and 17 are reported.  相似文献   

8.
The piperidines 12 – 18 , piperidmose analogues of Neu5Ac ( 1 ) with a shortened side chain, were synthesized from N-acetyl-D -glucosamine via the azidoalkene 32 and tested as inhibitors of Vibrio cholerae sialidase. Deoxygenation at C(4) of the uronate 22 , obtained from the known D -GlcNAc derivative 20 , was effected by β-elimination (→ 23 ), exchange of the AcO at C(3) with a (t-Bu)Me2SiO group and hydrogenation (→ 26 ; Scheme 1). Chain extension of 26 by reaction with Me3SiCH2MgCl gave the D -ido-dihydroxysilane 28 , which was transformed into the unsaturated L -xylo-mesylate 29 and further into the L -lyxo-alcohol 30 , the mesylate 31 , and the L -xylo-azide 32 . The derivatives 29 – 31 prefer a sickle zig-zag and 32 mainly an extended zig-zag conformation (Fig. 2). The piperidinecarboxylate 15 was obtained from 32 by ozonolysis (→ 33 ), intramolecular reductive animation (→ 34 ), and deprotection, while reductive animation of 34 with glycolaldehyde (→ 35 ) and deprotection gave 16 (Scheme 2). An intramolecular azide-olefin cycloaddition of 32 yielded exclusively the fused dihydrotriazole 36 , while the lactone 39 did not cyclize (Scheme 3). Treatment of 36 with AcOH (→ 37 ) followed by hydrolysis (→ 38 ) and deprotection led to the amino acid 18 . To prepare the (hydroxymethyl)piperidinecarboxylates 12 and 17 , 32 was first dihydroxylated (Scheme 4). The L -gluco-diol 40 was obtained as the major product, in agreement with Kishi's rule. Silylation of 40 (→ 42 ), oxidation with periodinane (→ 44 ), and reductive animation gave the L -gluco-piperidine 45 . It was, on the one hand, deprotected to the amino acid 12 and, on the other hand, N-phenylated (→ 46 ) and deprotected to 17 . While 45 and 12 adopt a 2C5 conformation, the analogous N-Ph derivatives 46 and 17 adopt a 5C2 and a B3,6 conformation, respectively, on account of the allylic 1,3-strain. The conformational effects of this 1,3-strain are also evident in the carbamate 47 , obtained from 45 (Scheme 5), and in the C(2)-epimerized bicyclic ether 48 , which was formed upon treatment of 47 with (diethylamino)sulfur trifluoride (DAST). Fluorination of 40 with DAST (→ 49 ) followed by treatment with AcOH led to the D -ido-fluorohydrin 50 . Oxidation of 50 (→ 51 ) followed by a Staudinger reaction and reduction with NaBH3CN afforded the (fluoromethyl)piperidine 52 , while reductive amination of 51 with H2/Pd led to the methylpiperidine 55 , which was similarly obtained from the keto tosylate 54 and from the dihydrotriazole 36 . Deprotection of 52 and 55 gave the amino acids 13 and 14 , respectively. The aniline 17 does not inhibit V. cholerae sialidase; the piperidines 12 – 16 and 18 are weak inhibitors, evidencing the importance of an intact 1,2,3-trihydroxypropyl side chain.  相似文献   

9.
Glycosylidene carbenes derived from the GlcNAc and AllNAc diazirines 1 and 3 were generated by the thermolysis or photolysis of the diazirines. The reaction of 1 with i-PrOH gave exclusively the isopropyl α-D -glycoside of 5 besides some dihydrooxazole 9 (Scheme 2). A similar reaction with (CF3)2CHOH yielded predominantly the α-D -anomer of 6 , while glycosidation of 4-nitrophenol (→ 7 ) proceeded with markedly lower diastereoselectivity. Similarly, the Allo-diazirine 3 gave the corresponding glycosides 12–14 , but with a lower preference for the α-D -anomers (Scheme 3). The reactions of the carbene derived from 1 with Ph3COH (→ 8 ) and diisopropylideneglucose 10 (→ 11 ) gave selectively the α-D -anomers (Scheme 2). The αD -selectivity increases with increasing basicity (decreasing acidity) of the alcohols. It is rationalized by an intermolecular H-bond between the acetamido group and the glycosyl acceptor. This H-bond increases the probability for the formation of a 1,2-cis-glycosidic C–O bond. The gluco-intermediates are more prone to forming a N–H…?(H)OR bond than the allo-isomers, since the acetamido group in the N-acetylallosamine derivatives forms an intramolecular H-bond to the cis-oriented benzyloxy group at C(3), as evidenced by δ/T and δ/c experiments.  相似文献   

10.
The addition of dienes, diazomethane, and carbenoids to the manno- and ribo-configurated thio-γ-O-lactones 1 and 2 was investigated. Thus, 1 (Scheme 1) reacted with 2,3-dimethylbutadiene (→ 4 , 73%), cyclopentadiene (→ 5a/b 1:1, 70%), cyclohexa- 1,3-diene (→ 9a/b 2:3, 92%), and the electron-rich butadiene 6 (→ 7a/b 3:1, 82%). Wheras 5a/b was separated by flash chromatography, 7a/b was desilylated leading to the thiapyranone 8 . Selective hydrolysis of one isopropylidene group of 9a/b and flash chromatography gave 10a and 10b . The structures of the adducts were elucidated by X-ray analysis ( 4 ), by NOE experiments ( 4 , 5a , 5b , 7a/b , 10a , and 10b ), and on the basis of a homoallylic coupling ( 7a/b ). The additions occurred selectively from the ‘exo’ -side of 1 . Only a weak preference for the ‘endo’-adducts was observed. Hydrogenation of 9a/b with Raney-Ni (EtOH, room temperature) gave the thiabicyclo [2.2.2]octane 11 . Under harsher conditions (dioxane, 110°), 9a/b was reduced to the cyclohexyl ß-D C-glycoside 12 which was deprotected to 13 . X-Ray analysis of 13 proved that the desulfuration occurred with inversion of the anomeric configuration. The regioselective addition of the dihydropyridine 14 to 1 (Scheme 2) and the methanolysis of the crude adduct 15 gave the lactams 16a (32%) and 16b (38%). Desilylation of 15 with Bu4NF · 3H2O, however, gave the unsaturated piperidinedione 17 (92%) which was deprotected to the tetrol 18 (65%). Similarly, 2 was transformed via 19 (62%) into the triol 20 (74%). The cycloaddition of 1 with CH2N2 (Scheme 3) gave a 35:65 mixture of the 2,5-dihydro- 1,3,4-triazole 21 and the crystalline 4,5-dihydro 1,2,3-triazole 22 . Treatment of 21 and 22 with base gave the hydroxytriazoles 23 and 24 , respectively. The structure of 24 was established by X-ray analysis. The triazole mixture 21/22 was separated by prep. HPLC at 5°. At room temperature, 21 already decomposed (half-life 21.6 h) leading in CDCI3 solution to a complex mixture (containing ca. 20–25% of the spirothiirane 27 and ca. 7–10% of its anomer) and in MeOH solution exclusively to the O,O,S-ortholactone 26 . Crystals of 22 proved be stable at 105°. Upon heating in petroleum ether at 100°, 22 was transformed into a ca. 1:1 mixture of 27 and the enol ether 28 . The reaction of 1 with ethyl diazoacetate (Scheme 4) in the presence of Rh2(OAc)4. 2H2O gave the unsaturated esters 29 (33%) and 30 (26%), whereas the analogous reaction with diethyl diazomalonate afforded the spirothiirane 31 (68%) and the enol ether 32 (29%). Complete transformation of 31 into 32 was achieved by the treatment with P(NEt2)3. Similary, 33 (69%) was prepared from 2 .  相似文献   

11.
The Me3Si? C(1) bond of the bis-(trimethylsilyl)ethynylated anhydroalditol 2 is selectively cleaved with BuLi to yield 3 / 4 , while AgNO2/KCN in MeOH cleaves the Me3Si? C(2′) bond, leading to 5 (Scheme 1). Both Me3Si groups are removed with NaOH in MeOH (→ 7 ), the (i-Pr)3Si group is selectively cleaved with HCl in aq. MeOH ( → 6 ); all silyl substituents are removed with Bu4NF ( → 8 ). Acetolysis transformed 9 into 13 , which was desilylated to 14 , while thiolysis of 9 led to a mixture 11 / 12 . The tetraacetate 14 has also been obtained from 9 via 10 . Oxidative dimerisation of either 3 or 5 , or of a mixture 3 / 5 yields only the homodimers 15 and 16 (Scheme 2); treatment of 16 with AgNO2/KCN yielded 17 , deprotection proceeding much more slowly than the cleavage of the Me3Si? C(2′) group of 2 . The iodoalkyne 20 , required for the cross-coupling with 5 according to Cadiot-Chodkiewicz, was prepared by deprotection of 3 / 4 to 18 , methoxymethylation (→ 19 ), and iodination. Cross-coupling yielded mostly 21 , besides the homodimer 22 . Similarly, cross-coupling of 20 and 23 (obtained from 5 ) led to 24 and 22 . The structure of 24 was established by X-ray analysis (Fig.), showing a C(6)–C(5′) distance of 5.2 Å. The conditions for deprotecting 2 were applied to 21 , and led to 25 (AgNO2/KCN), 26 (aq. NaOH), 27 (Bu4NF), and 29 (HCl/MeOH; Scheme 3). Attempted deprotection of the propargylic-ether moiety with BuLi, however, failed. The dimer 27 was further deprotected to 28 . Acetolytic (Ac2O/Me3SiOTf) debenzylation of the dimer 30 , obtained from 10 , gave 31 (83%) which was deacetylated to 32 (Scheme 4). Cross-coupling of 5 and the bromoalkyne 33 , obtained from 10 , yielded 34 ; again, acetolysis proceeded well, leading to 35 . The cellobiose derivative 38 was prepared from the lactone 36 via 37 . The glycosidic linkage of 38 proved resistant to the conditions of acetolysis, leading to 39 . Acetolysis of the benzylated thiophene 40 (from 30 with Na2S) yielded the octaacetate 41 , but proceeded in substantially lower yields (50%).  相似文献   

12.
The pyrrolidine derivatives 3 , 4 , and 5 were prepared from the methyl ester 7 of Neu2en5Ac via lie pyrrolidine-borane adduct 33 . They inhibit Vibrio cholerae sialidase competitively with Ki = 4. 4 10?3 M, 5. 3 10?3 M, and 4. 0 10?2 M, respectively. Benzylation of 7 gave the fully O-benzylated 8 besides 9, 10 , and 11. Ozonolysis and reduction with NaBH4 of 8 and 9 gave the 1, 4-diols 12 and 15 , the hydroxy acetates 13 and 16 , and the furanoses 14 and 17 (Scheme 1), respectively. The diol 12 was selectively protected (→ 19 → 20 → 23 ) and transformed into the azide 27 by a Mitsunobu reaction. Selective base-catalysed deprotection of the diacetate 22 , obtained from 12 , was hampered by an easy acetyl-group migration. The mesylate 28 proved unstable. The azide 27 was transformed via 29 into the ketone 30 (Scheme 2). Hydrogenation of 30 gave the dihydropyrrole 31 and, hence, the pyrrole 32. The adduct 33 was obtained from 30 by a Staudinger reaction (→31) and reduction with LiBH4/HBF4. It was transformed into the pyrroudine 34 . The structure of 34 was established by X-ray analysis. Reductamination of the pyrrolidine-borane adduct with glyoxylic acid gave 40 and, hence, 3. N-Alkylation afforded 44 and, hence, the phosphonate 4. The acid 5 was obtained from 33 by acylation (→ 47 ) and deprotection (Scheme 4).  相似文献   

13.
The protected disaccharide 44 , a precursor for the synthesis of allosamidin, was prepared from the glycosyl acceptor 8 and the donors 26–28 , best yields being obtained with the trichloroacetimidate 28 (Scheme 6). Glycosidation of 8 or of 32 by the triacetylated, less reactive donors 38–40 gave the disaccharides 46 and 45 , respectively, in lower yields (Scheme 7). Regioselective glycosidation of the diol 35 by the donors 38–40 gave 42 , the axial, intramolecularly H-bonded OH? C(3) group reacting exclusively (Scheme 5). The glycosyl acceptor 8 was prepared from 9 by reductive opening of the dioxolane ring (Scheme 3). The donors 26–28 were prepared from the same precursor 9 via the hemiacetal 25 . To obtain 9 , the known 10 was de-N-acetylated (→ 18 ), treated with phthalic anhydride (→ 19 ), and benzylated, leading to 9 and 23 (Schemes 2 and 3). Saponification of 23 , followed by acetylation also gave 9 . Depending upon the conditions, acetylation of 19 yielded a mixture of 20 and 21 or exclusively 20 . Deacetylation of 20 led to the hydroxyphthalamide 22 . De-N-acetylation of the 3-O-benzylated β-D -glycosides 11 and 15 , which were both obtained from 10 , was very sluggish and accompanied by partial reduction of the O-allyl to an O-propyl group (Scheme 2). The β-D -glycoside 30 behaved very similarly to 11 and 15 . Reductive ring opening of 31 , derived from 29 , yielded the 3-O-acetylated acceptor 32 , while the analogous reaction of the β-D -anomer 20 was accompanied by a rapid 3-O→4-O acyl migration (→ 34 ; Scheme 4). Reductive ring opening of 21 gave the diol 35 . The triacetylated donors 38–40 were obtained from 20 by debenzylidenation, acetylation (→ 36 ), and deallylation (→ 37 ), followed by either acetylation (→ 38 ), treatment with Me3SiSEt (→ 39 ), or Cl3CCN (→ 40 ).  相似文献   

14.
The synthesis of 6-C-methyl-Neu2en5Ac ( 4 ), 6-C-(hydroxymethyl)-Neu2en5Ac ( 5 ), and 6-C-methyl-Neu5Ac ( 6 ) is described. The 4-methylumbellyferyl glycosides 8 and 9 were also prepared but proved unstable. Protection of the previously reported nitro ether 10 (→ 11 ) followed by a Kornblum reaction gave the branched-chain derivative 13 which was transformed into aldehyde 14 and hence via 16 into the-protected 6-C-hydroxymethylated 20 and into the 6-C-methyl-substituted 18 (Scheme 1). Debenzylidenation of 20 and 18 afforded the diols 21 and 19 , respectively. Selective oxydation of 19 followed by esterification (→ 22 ), acetylation (→ 23 ), and elimination led to the protected 6-C-methyl-Neu2en5Ac derivative 24 (Scheme 2). Bromomethoxylation yielded mainly 25 and some 26 , which were reductively debrominated to 27 and 28 , respectively. Attempted deprotection of 27 did not lead to the corresponding acid, but to the 2,7- and 2,8-anhydro compounds 29 and 30 which were characterised as their peracetylated esters 31 and 32 (Scheme 3). The structure of 32 was established by X-ray analysis. Oxydation of 19 and 21 , followed by deprotection, esterification, and acetylation gave 37 and 38 , respectively (Scheme 4). The branched-chain Neu2en5Ac derivatives 4 and 5 were obtained by β-elimination (→ 39 and 40 ) and deprotection. Omission of the esterification after oxydation of 33 and 34 gave the lactones 35 and 36 which were transformed into 37 and 38 , respectively. Bromoacetoxylation of 39 gave 41-43 which were reductively debrominated to 44 (from 41 and 42 ) and 45 (Scheme 5). Bromoacetoxylation of 40 yielded 46 which was debrominated to 47. Glycosidation of the glycosyl chlorides obtained from 44 and 47 led to the α -D-glycosides 48 and 49 and to the elimination products 39 and 40 , respectively (Scheme 6). Transesterification of 48 , followed by saponification gave the unstable glycoside 8 and hence 6-C-methyl-Neu5Ac ( 6 ). The unstable glycoside 9 was obtained by similar treatment of 49 but yielded 50 under acidic conditions. The branched-chain 4 and 5 were weak inhibitors of Vibrio cholera sialidase, and 8 and 9 were very poor substrates.  相似文献   

15.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

16.
Synthesis of a 1,2-trans-Configurated, Equatorial Glycosylphosphonate Analogue of D -myo-Inositol 1,4,5-Trisphosphate The diphosphonate analogue 3 of D -myo-inositol 1,4,5-trisphosphate ( 1 ), a 1,2-trans-configurated, equatorial glycosylphosphonate, was synthesized and characterized as its hexasodium salt 3a . In a first approach, the silylated galactal 4 (Scheme 1) was transformed into the oxirane 5 and hence, by treatment with Me3SiP(OMe)2, into a mixture of the glycosylphosphonate 6 and its silyl ether 7 . This mixture was desilylated and then treated with acetone and FeCl3 to yield 8 and 9 (64 and 22%, resp., from 4 ). In a second approach, the acetates 11/12 (Scheme 2) were treated with P(OMe)3/Me3SiOTf in MeCN to afford the anomeric glycosylphosphonates 16/17 (1:1, 60%), while the trichloroacetimidate 10 gave mostly the αD -anomer 16 . The αD -anomer 20 was obtained from 12 and P(OPh)3. The highest yield of a β-D phosphonate was realized by treating 12 with the cyclic phosphite 15 (→ 18/19 , 40% each). The β-D -phosphonate 17 was debenzylated (→ 21 ) and protected to give 8 . Transformation of 8 into the bromide 22 (43%) proved difficult due to the facile demethylation of thephosphonate, and was best followed by treatment of the crude product with CH2N2 and 2,2-dimethoxyporpane. Phosphorylation of 22 yielded 41% of the (dimethoxyphosphoryl)phosphate 23 . The conditions of the Arbuzov reaction slowly converted the bromide 23 into the bis(phosphoryl)phosphate 24 (69%), which was then deprotected. The resulting 3 was purified via the ammonium salt and transformed into 3a (72%).  相似文献   

17.
Steroselective Alkylation at C(α) of Serine, Clyceric Acid, Threonine, and Tartaric Acid Involving Heterocyclic Enolates with Evocyelic Double Bonds The chiral, non-racemic title acids are converted to methyl dioxolane-(cf. 13 ), oxazoline-( 4 ) and oxazolidinecarboxylates (cf. 9 ). Deprotonation by Li(i-Pr) 2N at dry-ice temperature gives solutions of the lithium enolates A–D With exocyclic enolate double bonds. These are stable crough with respect to β-elimination (Scheme 1) to be alkylated with or without cosolvents such as HMPA or DMPU The products are formed in good to excellent yields and, with the exception of the tartrate-derived acetonlde (see Scheme 2), with diastereoselectivities above 90%. While the tartrate-and threonine-derived enolates ( A and B , resp.) are chiral due to the second stereogenic center of the precursors, the serine- and glyceric-acid-derived enolates ( A and B , resp.) are chiral due to the second sterogenic center of the precursors, the serine-nd glyceric-acid-derived enolates are non-racemic due to a tert butyl-substituted (pivalaldehyde-derived) acetal center ( C and D , resp.). The products of alkylation can be hydrolyzed to give α-branched tartaric acid (Scheme 2), allothreonine (Scheme 3), serine (Scheme 4), and glyceric-acid derivatives (Scheme 5) with quaternary stereogenic centers. The configurations of the products are determined by NOE-NMR measurements and by chemical correlation. These show that the dioxolane-derived enolates A and D are alkylated preferentially from that face of the ring which is already substituted (‘syn’-attack), while the dihydrooxazol-and oxazolidine-derived enolates B and C are alkylated from the opposite face (‘anti’-attack). The ‘syn’-attack is postulated to arise from strong folding of the heterocyclic ring due to electronic repulsion between the enolate π-system and non-bonding electron pairs on the heteroatoms (see Scheme 6).  相似文献   

18.
The novel 8,14‐secoursatriene derivative 6 was synthesized starting from ursolic acid ( 1 ) via methyl esterification of the 17‐carboxylic acid group and benzoylation of the 3‐hydroxy group (→ 2 ; Scheme 1), ozone oxidation of the C(12)?C(13) bond (→ 3 ), dehydrogenation with Br2/HBr (→ 4 ), enol acetylation of the resulting carbonyl group (→ 5 ; Scheme 2), and ring‐C opening with the aid of UV light (→ 6 ). Ring‐C‐opened dienone derivative 7 of ursolic acid was also obtained via selective hydrolysis of 6 (Scheme 2). Both compounds 6 and 7 are key intermediates for the preparation of chiral decalin synthons from ursolic acid.  相似文献   

19.
The thiolactone oxime 10 was synthesized in ten steps from the known tri-O-benzylglucose 13 , which was transformed into the oxime 14 , silylated (→ 15 ), and mesylated (→ 16 ). Treatment of 16 with Bu4NF yielded the L -ido-epoxide 17 and the hydroxylamine 18 ; the isomeric D -gluco-configurated hydroxylamine 20 was prepared from 17 . Reaction of 17 with thiourea yielded the thiirane 19 . Ring opening was best effected with HBr (→ 22 ·HBr). The N-glycosylhydroxylamine 22 was immediately oxidized to 24 , as it reverted to 19 . Similarly, 19 was transformed into the chlorides 21 and 23 . The iodide 25 reacted with TEMPO to afford 29 besides 26 and 30 ; nucleophilic substitution of 23 , 24 , or 25 gave unsatisfactory yields of 26 or 27 , and 28 . Birch reduction transformed 29 into 10 which was isolated via the pentaacetate 32 , which was also transformed into the tetraacetate 33 . The weak activity of 10 as an inhibitor of sweet-almond and Agrobacter β-glucosidase is in keeping with categorization of the lactone and lactam oximes 1–5 and the 5-thiosugars 6–9 as transition-state and substrate analogs, respectively.  相似文献   

20.
The synthesis of the indoles 7 , 15 , 16 with a 3-methoxyphenyl group, attached via an α-side chain of 1,2,or 3 CH2 units, is reported. These compounds, after appropriate protection at C(3), were transformed into the N-[(dimethylamino)methyl]indoles 22 , 23 , and 24 , respectively. When treated with AcCl, these N-Mannich bases gave, in two cases, stable N-(chloromethyl)indoles 25 and 26 . In the presence of SnCl4, ring closure occurred via electrophilic attack of 1-methylideneindolium ions on the methoxyphenyl group. Formation of seven-membered rings (→ 27 , 28 ) and eight-membered rings (→ 29 ) was found to be a favorable process. Cyclization to six-membered rings did not occur within this series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号