首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of non-equilibrium heating of air, carbon dioxide, nitrogen in a plasmatron with porous arc channel at intense gas blow are presented. The investigations are performed in the current range 100–500 A, at the gas pressure being higher than atmospheric. The deviation from the equilibrium conditions in the flow behind the plasmatron for air and carbon dioxide is evaluated by reaction products of nitrogen oxides synthesis and carbon dioxide conversion outputs. It is shown that these processes have non-equilibrium mode and it can explained by an increased products output. For nitrogen the excess of the vibrational temperature Tv over the translational T is defined by the laser probe method (at T = 1500 K Tv = 3000 K).  相似文献   

2.
Multi-variant three-dimensional numerical simulations demonstrate the feasibility of the continuous- detonation process in an annular combustor of a ramjet power plant operating on hydrogen as fuel and air as oxidant in conditions of flight at a Mach number of M 0 = 5.0 and an altitude of 20 km. Conceptual schemes of an axisymmetric power plant, 400 mm in external diameter and 1.3 to 1.5 m in length, with a supersonic intake, divergent annular combustor, and outlet nozzle with a frusto-conical central body are proposed. Calculations of the characteristics of the internal and external flows, with consideration given to the finite rate of turbulent-molecular mixing of the fuel mixture components with each other and with the combustion products, as well as the finite rate of chemical reactions and the viscous interaction of the flow with the bounding surfaces, have shown that, in these flight conditions, the engine of such a power plant has the following performance characteristics: the thrust, 10.7 kN; specific thrust, 0.89 (kN s)/kg; specific impulse, 1210 s; and specific fuel?consumption 0.303 kg/(N h). In this case, the combustor can operate with one detonation wave traveling in the annular channel at an average velocity of 1695 m/s, which corresponds to a detonation wave rotation frequency of 1350 Hz. It is shown that, an operating combustor has regions with subsonic flow of detonation products, but the flow is supersonic throughout its outlet section.  相似文献   

3.
A premixed H2/air flame with N2 dilution (Uin = 533 cm/s, ? = 1) was formed in a quartz micro flow reactor with/without a 100-nm thick Inconel coating for the investigation of wall chemical effect of the metal surface. Two-dimensional distributions of OH radical, O atom and H atom in the hydrogen flame were measured via the planar laser induced fluorescence (PLIF) and two-photon absorption laser induced fluorescence (TALIF), respectively. It is found that the distributions of all these three main species in the hydrogen flame are significantly affected by the wall chemical effect. OH, O and H shift downstream in the Inconel-coated channel, and also their concentration becomes lower than those in the less-reactive quartz channel. Based on the measured distributions of OH, O and H over the Inconel surface, the initial sticking coefficients (S0) of the radical quenching model are optimized. It is found that S0 for Inconel are 0.4–0.5, 0.1–0.2 and < 0.05 for OH, O and H, respectively, showing different sticking coefficients for different species for the first time.  相似文献   

4.
The laser ablation of the Nd:Y2O3 target with substantially nonuniform refractive index leads to the formation of a needle-shaped surface with a needle height of 6–8 mm. An increase in the displacement velocity of the laser beam on the surface to 80 cm/s and an increase in the diameter of the laser spot at the central part of the beam waist to 430 μm lead to a more uniform relief of the target surface and an increase in the nanopowder yield and production rate to 22% and 23 g/h, respectively. In addition, an excess of the mole content of the low-melting Nd2O3 in the powder decreases from 174 to 11% in comparison with the target. At an air pressure in the evaporation chamber of 0.8 bar, the mean sizes of nanoparticles (13–14 nm) are virtually independent of the displacement velocity of the beam on the surface (7–81 cm/s) and the rate of air flow above the target (13–70 m/s) in spite of significantly different nanopowder production rates.  相似文献   

5.
This work presents the results of the large scale experiments with detonation propagating in hydrogen–air mixtures in partially confined geometries. The main aim of the work was to find the critical conditions for detonation propagation in semi-confined geometries with uniform and non-uniform hydrogen–air mixtures. The experimental facility consisted of rectangular 9 × 3 × 0.6 m channel open from the bottom, acceleration section and test section, safety vessel, gas injection and data acquisition system. Sooted plates technique was used as a witness of the detonation. The rectangular channel was placed in a 100 m3 safety vessel. For uniform hydrogen–air mixtures experiments with four different channel heights h were performed: 8, 5, 3 and 2 cm. The critical hydrogen–air mixture height h* for which the detonation may propagate in a layer is close to the 3 cm which corresponds to approximately three detonation cell sizes. For non-uniform hydrogen–air mixture with hydrogen concentration slope equal approximately ?1.1%H2/cm the critical hydrogen concentration at the top of the layer is approximately equal 26% and the mean detonation layer height is close to the 8.5 cm corresponding to the hydrogen concentration at the bottom of the layer approximately equal 16–17%.  相似文献   

6.
Stabilization mechanisms of partially premixed H2/air flames on a coaxial dual swirl injector are investigated at atmospheric conditions. Hydrogen is injected through a central duct, and the air by the outer annular channel. Both channels are swirled and two stabilization modes are observed depending on the geometrical configuration of the injector and on the operating conditions. In certain regimes, the H2/air flame stabilizes on the injector lips as a diffusion flame. For other operating conditions, the flame is lifted from the injector and burns mainly in partially premixed regime leading to limited NOx emissions. PIV measurements in cold flow conditions and direct observations of the flame indicate that the flame stabilization mode is mainly controlled by the inner hydrogen swirl level, the injector recess and the hydrogen velocity. For a given air flowrate, a minimum hydrogen velocity to lift the flame is determined for each combination of inner swirl level and injector recess. Assuming the flame close to the injector lips behaves like an edge flame, a model for flame stabilization based on the triple flame speed and the location of the stoichiometric mixture fraction line is built. According to this model, the flame is anchored to the injector if the triple flame can propagate to the inner injector lips, i.e., if the velocity along the stoichiometric line is lower than the triple flame speed. The model is tested using hydrogen diluted with argon and air diluted with nitrogen. Two cases producing predicted opposite trends are verified. First, the stoichiometric line is moved in the direction of lower velocity zone keeping the triple flame speed constant in order to anchor a lifted flame. Next, the stoichiometric line is kept constant and the triple flame speed is reduced in order to lift an anchored flame. The mechanisms driving flame stabilization are discussed.  相似文献   

7.
The results of experimental investigation of critical flow of liquid nitrogen in a long adiabatic channel are presented. As the experimental specimen a channel with a length of 1646 mm, and an inner diameter of 4 mm was used. Pressure in the experiments at the inlet to the specimen was changed in the range pin = (3.06–5.39) × 105 Pa, the outlet pressure was pout = (1.26–4.44) × 105 Pa, and the volumetric flow rate was in the range V = (0–0.042) × 10–3 m3/s. The calculation of the coordinate of the cross section, in which one should expect the emergence of a shock wave, has been conducted. The calculation of local values of speed of sound and the velocity of the mixture allowed us to determine the critical value of the volumetric vapor quality in the critical cross section. Quantitative comparison of the conditions of emergence and existence of the critical flow in the long channel in comparison with short channels is carried out. Fundamental differences are shown.  相似文献   

8.
利用电晕放电离子迁移谱, 使用高纯氮气作为载气和迁移气体, 研究了电场强度在200~500 V/cm变化时CHCl3的解离电子吸附速率常数, 得到样品所对应的电子吸附速率常数为1.26×10-8~8.24×10-9 cm3/(molecules s).利用该装置测量了固定电场下,样品的电子吸附速率常数与样品浓度之间的关系.此外利用所获得的离子迁移谱图得到了不同电场强度下Cl-与CHCl3之间的离子分子反应速率常数.  相似文献   

9.
The number density of ground state atoms in the 2mm hydrogen arc (T≈20000 K) and the number density of molecules in the 5 mm hydrogen arc (T≈12000 K) have been measured by means of vuv spectroscopy. These species' are particularly likely to deviate from the equilibrium population and may therefore falsify the hydrogen transport coefficients measured in arc experiments. In the present investigation the optically thick line wings of Ly-α and the H2 molecular spectrum around 1600 Å have been analyzed. The results demonstrate that the former assumptions of LTE and PLTE, respectively, are completely justified on and near the arc axis. However, in the outer zones of these arcs a considerable overpopulation of the molecules must be expected as a consequence of radial diffusion.  相似文献   

10.
In this paper, results of hydrogen production via methane pyrolysis in the atmospheric pressure microwave plasma with CH4 swirl are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. The plasma generation was stabilized by a CH4 swirl having a flow rate of 87.5 L min-1. The absorbed microwave power was 1.5–5 kW. The hydrogen production rate and the corresponding energy efficiency were 866 g (H2) h-1 and 577 g (H2) kWh-1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).  相似文献   

11.
Electron drift velocities and attachment coefficients were measured in dry air (E/p=0.1–30 V/cm Torr) and in a 9∶1 nitrogen/oxygen mixture (E/p=0.2–3 V/cm Torr) in the pressure range from 50 to 200 Torr, using a modified spark chamber technique. The primary electrons were released by anα-particle. The temporal development of the electron density in the gap was determined from the amplitude of the current due to the avalanches, which were produced by applying high voltage pulses at different delay times. — It was found that in air the dissociative attachment sets in at higherE/p (~10–15 V/cm Torr) than in oxygen. At lowerE/p three body attachment is predominant. — When the high voltage pulses were applied after the transit time of the primary electrons, electron avalanches still appeared. It was concluded that they were started by electrons which were detached from negative ions. The estimated detachment rates indicate the formation of O 2 ? ions at lowE/p and of O? ions at higherE/p.  相似文献   

12.
We conducted spectroscopic studies of an electrical discharge plasma in a liquid, used for synthesis of nanosized particles of metals and their compounds. From the intensity ratio of the copper lines, we estimated the electron temperature, and from the Stark broadening of the hydrogen lines H α we determined the electron density in the electrical discharge plasma. Information about the concentration of copper atoms in the discharge was obtained from analysis of the spectra in the region of resonance lines of copper. We carried out a comparative analysis of the plasma parameters for spark and arc discharges in water, ethanol, and air. Based on the equation of state for an ideal plasma, taking into account the Debye correction, we estimated the pressure in the plasma channel.  相似文献   

13.
On a stationary and cylindersymmetrical arc produced in a cascade arc chamber measurements are performed in order to determine the transport coefficients of the H2-plasma especially the electrical conductivityσ and the heat flux potential \(S(S = \int\limits_{T_0 }^T {\kappa dT'} \) T=temperature,κ=thermal conductivity). In a channel of 2 mm diam. and at a pressure of 1 atm. a wall-load of 19 kW/cm2 and an almost complete ionization were reached. TheE-I-characteristic was measured for H2 in a wide range of arc currents. Because of technical and physical difficulties the totalE-I-characteristic had to be composed of measurements taken from three different channel diameters and converted by scaling laws to the smallest diameter. After this reduction an effective current range from 5·10?2 A to 150 A is covered. For the measurement of the characteristics a quasistatic method was developed which is more precise than others used before. From the measuredE-I-characteristic the radial distributions of the transport coefficients with the arc currentI as parameter were computed exactly by means of the energy balance equation using a newly developed iteration procedure. The final result is theσ(S)-function of hydrogen.  相似文献   

14.
Switchover from a runaway-electromnduced volume discharge to a spark is studied when a nanosecond discharge is initiated in high-pressure nitrogen an d air at a voltage of 50–250 kV. In the case of a cathode with a small radius of curvature and a flat anode and in the presence of cathode spots, the leader of the spark channel may propagate from the flat cathode. When the rate of rise of the voltage across centimeterwide gaps is high (dU/dt ∼ 1015 V/s or higher), cathode spots in the case of a corona discharge emerge within 200 ps.  相似文献   

15.
5 s; the polarizing field was varied from 10 V/cm to 10 kV/cm, and the temperature between -190 °C and 25 °C. The results confirm that the depolarization current in TGS follows the formula Id∼[(ωpt)n+(ωpt)m]-1, where n<1 and m>1. The values of the parameters n and m depend on both the electric field strength and the polarization time as well as on the temperature of the experiment. The loss peak frequency ωp exhibits activation character: ωp∼exp(-E/kBT) with E=0.34 eV at temperatures directly below room temperature and E=0.013 eV in the range of liquid nitrogen temperatures. Received: 1 April 1997/Accepted: 7 April 1997  相似文献   

16.
We experimentally study lean premixed combustion stabilized behind a backward-facing step. For a propane–air mixture, the lean blowout limit is associated with strong pressure fluctuation arising simultaneously with strong flame–vortex interactions, which have been shown to constitute the mechanism of heat release dynamics in this flow. A high-speed air jet, issuing from a small slot and injected perpendicular to the main flow near the step, is used to disrupt this mechanism. For momentum ratio of jet to main flow below unity, the jet dilutes the mixture, further destabilizing the flame or leading to complete blowout. Above unity, the flame becomes more stable, and the pressure oscillations are suppressed. Flow visualization and OH*/CH* chemiluminescence measurements show that a strong jet produces a more compact flame that is less driven by the wake vortex, anchored closer to the step, and deflected upwards away from the lower wall of the channel. This renders the flame less vulnerable to heat loss and strong strains, which improves its stability and extends the flammability limit. Adding hydrogen to the main fuel improves the flame stability over the entire range of the air jet mass flow, with better results for momentum ratio larger than 1; H2 pulls the flame further upstream, away from the shear zone and the unsteady vortex. NOx emission benefits from the air jet, while, with H2 addition, NOx concentration is higher in the products as the overall burning temperature rises. However, hydrogen addition enables extending the flammability limit further by increasing air supply in the primary stream, hence achieving lower NOx. The study suggests a simpler, almost passive, multi-objective combustion control technique and indicates that hydrogen addition can be a successful in situ approach for NOx reduction.  相似文献   

17.
In this study, the turbulent characteristics of the flow in an open channel with horizontal and inclined impermeable beds were studied experimentally using two-dimensional particle image velocimetry (PIV). The experiments were conducted in a channel of 6.5 m in length, 7.5 cm in width and 25 cm in height. The slope of the channel was S = 0 for the horizontal impermeable bed and for S = ?0.002, S = ?0.004 and S = ?0.006 for the inclined impermeable bed. Hydraulic characteristics such as distributions of velocities, turbulent intensities and Reynolds stress are investigated at a fine resolution using the PIV. Velocity is measured above the horizontal and inclined impermeable bed for the same different heights (h = 5, 7, 9, 11 and 13 cm) and for the same different discharges (Q = 0.735, 0.845 and 0.970 lt/s). Results show that the channel slope influences significantly near the impermeable bed but not near the free surface the variation of turbulent characteristics of the flow and also the alteration of the channel slope from ?0.002 to ?0.006 doesn't influence the variation of turbulent characteristics of the flow, which are the longitudinal turbulent intensity uU*, the vertical turbulent intensity v′/U* and the turbulent kinetic energy. The channel slope doesn't influence the Reynolds stress.  相似文献   

18.
The application of ultrasoft X-ray spectroscopy with variation of the electron excitation energy for phase analysis of thin films and phase reactions at solid/solid interfaces is considered. CN x nanocondensatess obtained by pulsed arc sputtering of graphite in the presence of nitrogen, silicon implanted with hydrogen ions, and Fe-Co silicides fabricated by ion-beam synthesis have been studied.  相似文献   

19.
Spinel MnCo2O4 nanoparticles on nitrogen‐doped reduced graphene oxide (MnCo2O4/NGr) are synthesized for advanced zinc–air batteries with remarkable cyclic efficiency and stability. The synthesized MnCo2O4/NGr exhibits good oxygen‐reduction reaction (ORR) activity with half‐wave potential E 1/2 of 0.85 V (vs reversible hydrogen electrode (RHE)), comparable to commercial Pt/C with E 1/2 of 0.88 V (vs RHE) along with superior oxygen electrode activity ΔE = 0.91 V for the ORR/OER (oxygen‐evolution reaction) in alkaline media. Durability tests confirm that MnCo2O4/NGr is more stable than Pt/C in alkaline environment. MnCo2O4/NGr functions with stable discharge profile of 1.2 V at 20 mA cm?2, large discharge capacity of 707 mAh g?1Zn at 40 mA cm?2 and a high energy density of 813 Wh kg?1Zn in a mechanically rechargeable zinc–air battery. The electrically rechargeable MnCo2O4/NGr zinc–air battery displays hybrid behavior with both Faradaic and oxygen redox charge–discharge characteristics, operating at higher voltage and providing higher power density and excellent cyclic efficiency of 86% for over 100 cycles compared to Pt/C with efficiency of around 60%. Moreover, hybrid zinc–air battery operates with a stable and energy efficient profile at different current densities.  相似文献   

20.
The start-up of platinum-coated, hydrogen-fuelled planar channels with heights of 1 mm is investigated numerically using 2-D transient simulations with detailed hetero-/homogeneous chemistry, heat conduction in the solid wall and surface radiation heat transfer. Simulations encompass pressures of 1 and 5 bar and fuel-lean H2/air equivalence ratios of 0.10 to 0.28. Catalytic ignition is inhibited by rising pressure and increasing hydrogen concentration. However, at temperatures above the catalytic ignition temperature Tign, the dependencies of the heterogeneous reactivity reverse, showing a positive order ~1.5 with respect to hydrogen concentration and an overall positive pressure order of ~0.97. Despite the longer catalytic ignition times for the larger equivalence ratios, the times required to reach steady state are shorter at larger stoichiometries due to their enhanced catalytic reactivity at T > Tign and the resulting higher exothermicity. Following catalytic ignition, the wall temperatures eventually attain superadiabatic values due to the diffusional imbalance of hydrogen. Homogeneous chemistry considerably moderates the superadiabatic surface temperatures at 5 bar, as the gaseous combustion zone extends parallel to the channel wall and thus shields the catalyst surface from the hydrogen-rich channel core. Furthermore, gas-phase chemistry reduces the steady-state times and substantially increases the hydrogen conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号