首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The reaction of naringenin with Ce(IV) was studied in different aqueous solutions of DMSO (50–80% v/v) and various sulfuric acid concentrations using a spectrophotometric method. The reaction was arranged to be under pseudo‐first‐order condition with respect to Ce(IV). It was found that 1 mol of Ce(IV)sulfate on average has consumed by about 2 mol of naringenin to complete the reaction. To determine the stoichiometric ratios of metal ion and the ligand in the formed complex species, the continuous variation method has been used. The results showed that pseudo‐first‐order rate constants increase with increasing naringenin concentration and decrease by increasing the amount of DMSO and sulfuric acid in solution. The rate constant (k1) was measured at different conditions. Finally, a mechanism consistent with the observed results has been proposed and discussed at various aqueous DMSO solutions. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 715–724, 2011  相似文献   

2.
Ethylenediamine tetraacetic acid (EDTA) terminated polyacrylamide was obtained by using the EDTA–cerium(IV) ammonium nitrate [Ce(IV)] redox initiator in the aqueous polymerization of acrylamide. The polymerization behaviors as a function of the concentration of Ce(IV), EDTA, and acrylamide as well as temperature were studied. The consumption rate of cerium(IV) depends a first-order reaction on the ceric ion concentration ([Ce(IV)]). The complex formation constant (K) and disproportionation constant (kd) of Ce(IV)–EDTA chelated complex are 1.67 × 104 and 3.77 × 10?3, respectively. The rate dependences of polymerization on monomer concentration and EDTA concentration both follow a second-order reaction in the run of initial monomer concentration ([M]i) equal to 0.2 mol dm?3. The number average molecular weight increases linearly with the ratio of [M]i/[Ce(IV)]i. The mechanism and kinetics for the polymerization was proposed. The kinetic parameters involved were determined. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The kinetics of electron transfer reactions between acetophenones with Ce(IV) have been studied in aqueous acetic acid medium in the presence of cationic micelle Cetylpyridinium chloride (CPyCl) at different temperatures. Kinetic data reveal first-order dependence with respect to each of Ce(IV) and acetophenones. The cationic micelle, Cetylpyridinium chloride enhances the oxidation reactions. The catalysis fits to a model developed by Menger and Portnoy as well as Berezin's phase separation model. The binding and partition constants and the transfer free energy from water to micelle have been estimated and discussed, suggesting that the solubilization of both the reactants in the micellar phase, facilitates the oxidation. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Chemical polymerization of acrylamide at room temperature was examined by using thioglycolic acid-cerium (IV) sulfate and thioglycolic acid-KMnO4 redox systems in acid aqueous medium. Water soluble polyacrylamides containing thioglycolic acid end groups were synthesized. The effects of the molar ratio of acrylamide to Ce(IV) n AAm /n Ce(IV) , the polymerization time, the temperature, the monomer concentration, the molar ratio of cerium (IV) sulfate to thioglycolic acid and the concentration of sulfuric acid on the yield and molecular weight of polymer were investigated. Lower molar ratios of acrylamide/Ce(IV) at constant monomer concentration resulted in an increase in the yield but a decrease in molecular weight of polymer. The increase of reaction temperature from 20 to 70°C resulted in a decrease in the yield but generally resulted in a constant value for the molecular weight of polymer. With increasing polymerization time, the yield and molecular weight of polymer did not change substantially. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions respectively in the polymerization reaction. The existence of Ce(III) ion bound to polymer was investigated by UV-visible spectrophotometry and fluoresce measurements. The amount of Mn(II) incorporated into the polymer was determined using graphite furnace atomic absorption spectrometry. The mechanism of this phenomenon is discussed.  相似文献   

5.
Kinetic study of oxidation of adipic acid by Ce(IV) ion in aqueous solution of sulphuric acid shows that the reaction follows first order kinetics in both Ce(IV) and adipic acid and the over all reaction order ascertained is two. The specific rate constant increases with an increase in the concentration of adipic acid. Effects of hydrogen ion concentration, bisulphate ion and temperature have been studied in detail. Various kinetic parameters have been computed. The experimental findings are consistent with the mechanism involving rapid resersible formation of an activated complex between Ce(IV) and adipic acid followed by a rate determining step involving C-C bond fission.  相似文献   

6.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

7.
Polymerization of methyl methacrylate was carried out in aqueous nitric acid in the temperature range 26–40°C, with the redox initiator system ceric ammonium nitrate–isopropyl alcohol. A short induction period was observed, as well as the attainment of a limiting conversion, and the total ceric ion consumption with reaction time. The reaction orders were 1/2 and 3/2 with respect to the IPA and monomer concentration, respectively, within the range (3–5) × 10?3M of Ce(IV). But at lower Ce(IV) concentration (≤ 1 × 10?3M), the order with respect to monomer and Ce(IV) changed to 1 and 1/2, respectively. The rate of ceric ion disappearance was first order with respect to Ce(IV) concentration and (RCe)?1 was proportional to [IPA]?1. Both the rate of polymerization and the rate of ceric ion consumption increase with rise in temperature. The average-molecular weight can be controlled by variations in IPA, Ce(IV), and monomer concentrations, and in temperature. A kinetic scheme involving oxidation of IPA by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by bimolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

8.
The various aspects of valency stabilization of polyvalent ions during -radiolysis have been further investigated. Ce(IV) ions, which are normally reduced in their aqueous solution, were found to be stabilized for increasing periods of time when they were irradiated in the presence of increasing amounts of bromate ions. It was found that the addition of about fifteen times excess of bromate ions to a 10–3 N Ce(IV) solution stabilized the cerium ions in the tetravalent state for about 120 hours during irradiation at a dose rate of 336 Gy/h. Increasing the amount of bromate used resulted in a subsequent increase in the protection time. It has been also noted that while bromate ions protected Ce(IV) in solution, the latter ions showed a clear protective effect on the bromate used, i.e., there is a mutual protective effect. The probable mechanisms, conditions and limitations of the protection process have been discussed. Based on the data obtained in the present work, it has been suggested that the protection of Ce(IV) ions by bromate ions in aqueous solutions during -radiolysis is very probably due to the preferential interaction of bromate with the reducing radiolysis products of water which are capable of reducing Ce(IV) to Ce(III).  相似文献   

9.
The interaction between diethylenetriaminepentaacetic acid (DTPA or HsZ) and Ce(III) and Th(IV) ions has been investigated spectrophotometrically in aqueous solution at an ionic strength of 0.1 and for various temperatures. It has been found that the Ce(III)-DTPA chelate (1:1) exhibited a characteristic absorption maximum at 297 nm, and the optimum pH range is between 3.4 to 4.4. The absorption of Ce(III)-DTPA chelate is considerably diminished by adding small amounts of Th(IV) ions. This phenomenon was used to evaluate the formation constant of Th(IV)-DTPA chelate (1:1). The formation constants and the thermodynamic properties characterizing the formation of the chelates have been calculated at 25°. The results are as follows:   相似文献   

10.
Vinyl polymerization of acrylonitrile initiated by the Ce(IV)/thioacetamide redox system has been investigated in aqueous sulfuric acid in the temperature range of 10–20°C. The rate of polymerization (Rp) and the rate of Ce(IV) disappearance (?RCe) were measured. The effect of certain water-soluble organic solvents, added electrolytes, and aromatic and heterocyclic organic nitrogen compounds on the rate of polymerization has been investigated. Depending on the experimental results, we have suggested a suitable reaction scheme for the system which involves the production of initiating radicals from the oxidation of thioacetamide (TAm) by ceric ion and the termination of the polymer chain by metal ions.  相似文献   

11.
The redox-initiated polymerization of methyl methacrylate (MMA) by the Ce(IV)-malic acid system has been carried out in aqueous medium under an inert atmosphere. The rate of polymerization was found to be proportional to [MMA]3/2 [MA]1/2 [Ce(IV)]1/2 and the rate of ceric ion disappearance was proportional to [Ce(IV)] but independent of [MMA]. The rate increased linearly up to a certain range of [MA], above which it remained constant. Increasing [H2SO4] decreased the rate. The activation energy was found to be 57.44 kJ/mol.  相似文献   

12.
The thermal degradation of poly(methyl methacrylate) as polymerized in aqueous nitric acid solution using Ce(IV) alone and in combination with isobutyl alcohol, isopropyl alcohol, glucose, maltose, and cellobiose as initiator systems has been investigated using differential thermal analysis (DTA) and thermogravimetry (TGA) in dynamic nitrogen. The kinetic parameters E, n, and A have been obtained following several methods of thermogravimetric analysis. The most stable material was found to be the PMMA sample obtained with Ce(IV), and the Ce(IV)–IBA and Ce(IV)–maltose polymerized samples were the least stable. In the pyrolysis of Ce(IV)–IBA and Ce(IV)–maltose polymerized samples it was found that two reactions occurred, while in the case of the PMMA polymerized with Ce(IV), Ce(IV)–IPA, Ce(IV)–glucose, and Ce(IV)–cellobiose three reactions took place.  相似文献   

13.
In this study, a series of chelating type reductants containing redox pairs were tested as the initiator for aqueous polymerizations. The redox pairs consist of Ce(IV) or several first-row transition metals coupled with chelating agents of amino acids, dibasic acids, or diamine. The initial rates and limiting conversions of acrylamide polymerization initiated by those redox pairs were determined. The reductive reactivity of the chelating agents with Ce(IV) and the oxidative half-wave potential of Ce(III)-chelating agent/Ce(IV)-chelating agent were measured to evaluate the feasibility of these redox pairs as initiators. After the evaluation, the redox pairs other than Ce(IV)-amino acid type chelating agent were precluded to be promising initiators for aqueous polymerizations. Those Ce(IV)-amino acid type chelating agent redox pairs which could form at least two five- or six-membered rings were found to be potential initiators. The Ce(IV)-NTA pair was the most promising one. The mechanism of initiation of the redox pairs was proposed and further confirmed by the 13C- and 1H-NMR spectra of NTA-terminated polyacrylamide. The complex formation constants (K) and disproportionation constants (kd) of the Ce(IV)-amino acid type chelating agent redox initiators for acrylamide polymerization were evaluated. The factors governing the parameters of chelated complexes and the performance of polymerizations were discussed. These redox pairs were also used as the initiators for aqueous polymerizations of acrylic acid and acrylonitrile. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Maleic acid (MA) in aqueous sulfuric acid undergoes catalytic isomerization in the presence of small amounts of Cerium(IV) ion and N-bromosuccinimide (NBS) or N-bromoacetamide (NBA). The rate of isomerization is very fast even at room temperature and the yield is quite acceptable. The rate of isomerization depends on the relative amounts of MA, Ce(IV), NBS, NBA, and H2SO4. However, maleic acid has greater effect on the final yield. Sulfuric acid exhibits more chemical effect than physical effects. The competitive redox reactions of Ce(IV), NBS, and NBA with MA limit the yield of isomerization to about 85%. In the vicinity of room temperature, a raise of five degrees in temperature nearly doubles the rate of isomerization. Acrylamide shows inhibitive effect on the isomerization. The rate of hydrolysis of NBS or NBA in aqueous acidic solution depends on the concentrations of hydrogen ion, and NBS or NBA itself. The rate of hydrolysis of NBA is much faster than that of NBS. Mechanism involving bromine atom as catalyst is proposed to explain experimental results.  相似文献   

15.
The kinetics and mechanism of cerium(IV) oxidation of hexitols, i.e. D ‐sorbitol and D ‐mannitol, in aqueous sulfuric acid media have been studied in the presence and absence of surfactants. Under the kinetic conditions, [S]T ? [Ce(IV)]T, where [S]T is the total substrate (D ‐sorbitol or D ‐mannitol) concentration, the overall process shows a first‐order dependence on [Ce(IV)]T and [S]T. The process is acid catalyzed and inhibited by [HSO]. From the [HSO] dependence, it has been noted that the both Ce(SO4)2+ and Ce(SO4)2 have been found kinetically active. The different rate constants in the presence and absence of surfactants have been estimated with the activation parameters. N‐cetylpyridinium chloride has been found to retard the oxidation process of hexitols, whereas sodium dodecyl sulfate has been found to accelerate the rate process. All these findings including the micellar effects have been interpreted in terms of the proposed reaction mechanism and partitioning behavior of the kinetically active different species of Ce(IV) between the aqueous and pseudomicellar phase. © 2008 Wiley Periodicals, Inc. 40: 445–453, 2008  相似文献   

16.
The oxidation of D ‐mannitol by cerium(IV) has been studied spectrophotometrically in aqueous sulfuric acid medium at 25°C at constant ionic strength of 1.60 mol dm?3. A microamount of ruthenium(III) (10?6 mol dm?3) is sufficient to enhance the slow reaction between D ‐mannitol and cerium(IV). The oxidation products were identified by spot test, IR and GC‐MS spectra. The stoichiometry is 1:4, i.e., [D ‐mannitol]: [Ce(IV)] = 1:4. The reaction is first order in both cerium(IV) and ruthenium(III) concentrations. The order with respect to D ‐mannitol concentration varies from first order to zero order as the D ‐mannitol concentration increases. Increase in the sulfuric acid concentration decreases the reaction rate. The added sulfate and bisulfate decreases the rate of reaction. The active species of oxidant and catalyst are Ce(SO4)2 and [Ru(H2O)6]3+, respectively. A possible mechanism is proposed. The activation parameters are determined with respect to a slow step and reaction constants involved have been determined. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 440–452, 2010  相似文献   

17.
The polymerization of acrylonitrile (M) initiated by the Ce(IV)-propane-1,2-diol (R) redox system has been studied in aqueous sulphuric acid under nitrogen in the temperature range 30 to 40°. The rate of polymerization is proportional to [M]2, [R] and [Ce(IV)]?1 and the rate of ceric ion disappearance is proportional to [R], [Ce(IV)]. The effects of certain salts, acid, solvent and temperature on both rates have been investigated. A kinetic scheme has been proposed, and various rate and energy parameters evaluated.  相似文献   

18.
宋文玉  降青梅 《化学学报》2005,63(2):109-113
在酸性介质中用氧化还原滴定法研究了铈(IV)离子在铬(III)离子催化作用下, 于25~40 ℃区间氧化四氢糠醇的反应动力学. 结果表明反应对铈(IV)和四氢糠醇均为一级. 准一级速率常数kobs随催化剂[Cr(III)]增加而增大, 亦随[H]增加而增大, 而随增加而减小. 在氮气保护下, 反应不能引发丙烯酰胺聚合, 说明在反应中没有自由基产生. 提出了催化剂、底物和氧化剂间生成双核加合物的反应机理. 通过kobs与的依赖关系, 并结合Ce(IV)在溶液中的平衡, 找到了本反应体系的动力学活性物种是Ce(SO4)2. 还计算出一些速率常数及相应的活化参数.  相似文献   

19.
The present investigation describes a new approach for the determination of radical substituent parameters σ. The technique has been developed by an ingenious combination of two equations, one proposed by Yamamoto and Otsu and the other by Streitwieser and Perrin. The σ values for different substituents were first evaluated by application of this newly developed technique to the Ce(IV)-substituted toluenes–acrylonitrile system. The validity of these values was then tested by application to another system, the Ce(IV)-substituted acetophenones–acrylonitrile system, which is the subject of the present study.  相似文献   

20.
The manganese(II) catalysed oxidation of glycerol by cerium(IV) in aqueous sulphuric acid has been studied spectrophotometrically at 25 °C and I = 1.60 mol dm−3. Stoichiometry analysis shows that one mole of glycerol reacts with two moles of cerium(IV) to give cerium(III) and glycolic aldehyde. The reaction is first order in both cerium(IV) and manganese(II), and the order with respect to glycerol concentration varies from first to zero order as the glycerol concentration increases. Increase in sulphuric acid concentration, added sulphate and bisulphate all decrease the rate. Added cerium(III) retards the rate of reaction, whereas glycolic aldehyde had no effect. The active species of oxidant and catalyst are Ce(SO4)2 and [Mn(H2O)4]2+. A mechanism is proposed, and the reaction constants and activation parameters have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号