首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

2.
The rate of reaction of NO 2 ion with various FeIII porphyrins in the presence of PPh3 is shown to depend on the redox potential of the FeIII center. There is a linear relationship between the ease of reduction of the FeIII to FeII and the kinetics for the formation of the FeII porphyrin nitrosyl adduct, with concomitant oxidation of PPh3 to PPh3O. Cyclic voltammograms show reversible one-electron reductions that can be ascribed to the FeIII/FeII couple ranging from E1/2 = −343 to −145 mV (versus Ag/AgCl). The order of increasing half-wave reduction potentials for the FeIII/FeII porphyrin redox centers studied is octaethylporphyrin > etioporphyrin I > deuteroporphyrin IX dimethyl ester > protoporphyrin IX dimethyl ester > α,β,γ,δ-tetraphenylporphyrin. This sequence of redox potentials complements the pseudo first-order kinetics ( to m s −1) for the oxidation of PPh3 and subsequent FeII porphyrin nitrosyl adduct formation. The rates of reaction of biomimetic FeIII porphyrins with NO 2 ion demonstrate how metal center redox properties are influenced by the surrounding ligand. In this paper we have elucidated a possible mechanistic control for the rate of this reaction.  相似文献   

3.
The binding of a series of substituted phenols as axial ligands onto a diiron(III)? bisporphyrin framework have been investigated. Spectroscopic characterization revealed high‐spin states of the iron centers in all of the phenolate complexes, with one exception in the 2,4,6‐trinitrophenolate complex of diiron(III)? bisporphyrin, which only stabilized the pure intermediate‐spin (S=3/2) state of the iron centers. The average Fe? N (porphyrin) and Fe? O (phenol) distances that were observed with the 2,4,6‐trinitrophenolate complex were 1.972(3) Å and 2.000(2) Å, respectively, which are the shortest and longest distances reported so far for any FeIII? porphyrin with phenoxide coordination. The alternating shift pattern, which shows opposite signs of the chemical shifts for the meta versus ortho/para protons, is attributed to negative and positive spin densities on the phenolate carbon atoms, respectively, and is indicative of π‐spin delocalization onto the bound phenolate. Electrochemical data reveals that the E1/2 value for the FeIII/FeII couple is positively shifted with increasing acidity of the phenol. However, a plot of the E1/2 values for the FeIII/FeII couple versus the pKa values of the phenols shows a linear relationship for all of the complexes, except for the 2,4,6‐trinitrophenolate complex. The large deviation from linearity is probably due to the change of spin for the complex. Although 2,4,6‐trinitrophenol is the weakest axial ligand in the series, its similar binding with the corresponding FeIII? monoporphyrin only results in stabilization of the high‐spin state. The porphyrin macrocycle in the 2,4,6‐trinitrophenolate complex of diiron(III)? bisporphyrin is the most distorted, whilst the “ruffling” deformation affects the energy levels of the iron d orbitals. The larger size and weaker binding of 2,4,6‐trinitrophenol, along with heme? heme interactions in the diiron(III)? bisporphyrin, are responsible for the larger ring deformations and eventual stabilization of the pure intermediate‐spin states of the iron centers in the complex.  相似文献   

4.
Two iron–nitrosyl–porphyrins, nitrosyl[meso‐tetrakis(3,4,5‐trimethoxyphenylporphyrin]iron(II) acetic acid solvate ( 3 ) and nitrosyl[meso‐tetrakis(4‐methoxyphenylporphyrin]iron(II) CH2Cl2 solvate ( 4 ), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen‐atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}7 class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4–8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric‐oxide‐free iron(III)–porphyrin can be re‐nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these FeII complexes at high pH values seems to be similar to that in nitrophorin, a nitric‐oxide‐transport protein, which formally possesses FeIII. However, because the release of NO occurs from ferrous–nitrosyl–porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein.  相似文献   

5.
The novel iron(III) porphyrin dendrimers of generation zero ([ 1 ⋅FeIII]Cl), one ([ 2 ⋅FeIII]Cl), and two ([ 3 ⋅FeIII]Cl) (Fig. 1) were prepared (Schemes 1 and 3) as models of heme monooxygenases. They feature controlled axial ligation at the Fe center by one imidazole tethered to the porphyrin core and possess a vacant coordination site available for ligand binding and catalysis. The high purity of the dendrimers and the absence of structural defects was demonstrated by matrix‐assisted laser‐desorption‐ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (Fig. 3). The electronic properties of the FeIII porphyrin dendrimers and comparison compounds [ 4 ⋅FeIII]Cl and [ 12 ⋅FeIII(1,2‐Me2Im)]Cl (1,2‐Me2Im=1,2‐dimethylimidazole) were investigated by UV/VIS and EPR (electronic paramagnetic resonance) spectroscopy, as well as by measurements of the magnetic moments by the Evans‐Scheffold method. Epoxidation of olefins and oxidation of sulfides to sulfoxides, catalyzed by the new dendritic metalloporphyrins, were investigated in CH2Cl2 with iodosylbenzene as the oxidant (Tables 1 and 2). The total turnover numbers were found to increase with the size of the dendrimer, due to improved catalyst stability at higher dendritic generations (Figs. 4 and 5). The second‐generation complex [ 3 ⋅FeIII]Cl was, therefore, the most efficient catalyst in the series, despite the fact that its active site is considerably hindered by the encapsulation inside the sterically demanding, fluctuating dendritic wedges. Very high product selectivities were observed in all oxidation reactions, regardless of dendrimer generation.  相似文献   

6.
A 1:1 inclusion complex (FeIIPImCD) of 5,10,15,20‐tetrakis‐ (4‐sulfonatophenyl)porphinatoiron(II) (FeIIP) and an O‐methylated β‐cyclodextrin dimer with an imidazole linker (ImCD) was found to bind dioxygen in aqueous solution. The half‐saturation pressure of dioxygen (P1/2O2) is 1.7 torr at 25 °C, which is 10 times lower than that for a previous myoglobin functional model (hemoCD) with a pyridine linker. Meanwhile, the half‐life of oxygenated FeIIPImCD is 3 h, which is 10 times shorter than that of oxygenated hemoCD. The covering of the iron(II) center by a microscopic environment is essential for preventing autoxidation of oxygenated ferrous porphyrin, which is promoted by nucleophilic attack of H2O and/or nucleophiles such as inorganic anions. Due to structural requirements, covering of the FeII center of FeIIPImCD is insufficient compared with the case of hemoCD. As a result, water molecules can penetrate more easily the cleft of the O2–FeIIPImCD complex and act as an autoxidation inducer. This structure also causes poorer selectivity against carbon monoxide (M=1040). In contrast, the dioxygen affinity of FeIIPImCD is much higher than that of hemoCD because the imidazole moiety is a stronger electron donor than pyridine.  相似文献   

7.
The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII(OOH)(L52)]2+ (L52=N-methyl-N,N’,N’-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at −70 °C results in the release of dioxygen and in the formation of [FeII(OH)(L52)]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII(OOH) intermediate generated upon reduction of the FeIII(OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O−O heterolytic cleavage pathway via a FeIV-oxo species.  相似文献   

8.
Polycrystalline Co0.75Ni0.75[Fe(CN)6]?·?XH2O was prepared by coprecipitation. The coprecipitated powder was annealed in vacuum at 80°C, 100°C, and 130°C. Variation of microstructural and magnetic properties with different annealed temperatures was studied by Fourier-transform infrared, X-ray diffraction, and magnetization measurements. The differences in magnetic phase transition temperature, coercivity, remanence, and effective magnetization were studied in detail. The magnetic contribution mainly results from FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII because FeII–CN–CoIII/NiII carries no net spin. After annealing at 130°C, the microstructures FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII convert to FeII–CN–CoIII/NiII. Differences in magnetic properties may be attributed to heat-induced microstructural changes.  相似文献   

9.
Characteristics of iron(III) complexes with malic acid in 0.55 mol L?1 NaCl were investigated by voltammetric techniques. Three iron(III)‐malate redox processes were detected in the pH range from 4.5 to 11: first one at ?0.11 V, second at ?0.35 V and third at ?0.60 V. First process was reversible, so stability constants of iron(III) and iron(II) complexes were calculated: log K1(FeIII(mal))=12.66±0.33, log β2(FeIII(mal)2)=15.21±0.25, log K1(FeII(mal))=2.25±0.36, and log β2(FeII(mal)2)=3.18±0.32. In the case of second and third reduction process, conditional cumulative stability constants of the involved complexes were determined using the competition method: log β(Fe(mal)2(OH)x)=15.28±0.10 and log β(Fe(mal)2(OH)y)=27.20±0.09.  相似文献   

10.
11.
Summary The phototransformation of iron(III) nitrilotriacetate, Fe(NTA), was studied at 20 °C under monochromatic excitation at different pHs. The conjugation of excitation wavelength and pH gives rise to different photochemical behaviour. In acidic medium, it always results in a redox process giving rise to FeII, HCHO and CO2 but the stoichiometry of the photoproducts depends on the excitation wavelength. At long wavelength (365 nm), the FeII/HCHO ratio of unity implies a redox reaction between FeIII and the carboxylic group whereas at short wavelength (254 nm) the Fe/HCHO ratio is equal to 2 and implies a redox process between FeIII and a water ligand. In neutral solution and at 365 nm, a photosolvation is observed with NTA release; at 254 nm a subsequent redox process between OH and the hydrous ferric oxide is involved. In terms of the fate of Fe(NTA) in the environment at pH 5–6 and under sunlight, all of the above photochemical reactions can occur.  相似文献   

12.
The present study focuses on the oxidation of the water‐soluble and water‐insoluble iron(III)–porphyrin complexes [FeIII(TMPS)] and [FeIII(TMP)] (TMPS=meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphyrinato, TMP=meso‐tetrakis(2,4,6‐trimethylphenyl)porphyrinato), respectively, by meta‐chloroperoxybenzoic acid (m‐CPBA) in aqueous methanol and aqueous acetonitrile solutions of varying acidity. With the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique, the complete spectral changes that accompany the formation and decomposition of the primary product of O? O bond cleavage in the acylperoxoiron(III)–porphyrin intermediate [(P)FeIII? OOX] (P=porphyrin) were successfully recorded and characterized. The results clearly indicate that the O? O bond in m‐CPBA is heterolytically cleaved by the studied iron(III)–porphyrin complexes independent of the acidity of the reaction medium. The existence of two different oxidation products under acidic and basic conditions is suggested not to be the result of a mechanistic changeover in the mode of O? O bond cleavage on going from low to high pH values, but rather the effect of environmental changes on the actual product of the O? O bond cleavage in [(P)FeIII? OOX]. The oxoiron(IV)–porphyrin cation radical formed as a primary oxidation product over the entire pH range can undergo a one‐ or two‐electron reduction depending on the selected reaction conditions. The present study provides valuable information for the interpretation and improved understanding of results obtained in product‐analysis experiments.  相似文献   

13.
Interactions of multivalent anionic porphyrins and their iron(III) complexes with cationic peptides, V3Ba‐L and V3IIIB, which correspond to those of the V3 loop regions of the gp120 envelope proteins of the HIV‐1Ba‐L and HIV‐1IIIB strains, respectively, are studied by UV/Vis, circular dichroism, 1H NMR, and EPR spectroscopy, a microcalorimetric titration method, and anti‐HIV assays. Tetrakis(3,5‐dicarboxylatophenyl)porphyrin (P1), tetrakis[4‐(3,5‐dicarboxylatophenylmethoxy)phenyl]porphyrin (P2), and their ferric complexes (FeIIIP1 and FeIIIP2) were used as the multivalent anionic porphyrins. P1 and FeIIIP1 formed stable complexes with both V3 peptides (binding constant K>106 M ?1) through combined electrostatic and van der Waals interactions. Coordination of the His residues in V3Ba‐L to the iron center of FeIIIP1 also played an important role in the complex stabilization. As P2 and FeIIIP2 form self‐aggregates in aqueous solution even at low concentrations, detailed analysis of their interactions with the V3 peptides could not be performed. To ascertain whether the results obtained in the model system are applicable to a real biological system, anti‐HIV‐1BA‐L and HIV‐1IIIB activity of the porphyrins is examined by multiple nuclear activation of a galactosidase indicator (MAGI) and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays. There is little correlation between chemical analysis and actual anti‐HIV activity, and the size rather than the number of the anionic groups of the porphyrin is important for anti‐HIV activity. All the porphyrins show high selectivity, low cytotoxicity, and high viral activity. FeIIIP1 and FeIIIP2 are used for the pharmacokinetic study. Half‐lives of these iron porphyrins in serum of male Wistar rats are around 4 to 6 h owing to strong interaction of these porphyrins with serum albumin.  相似文献   

14.
The electrochemistry and spectroelectrochemistry of manganese tetrakis(N-methyl-4-pyridyl)porphine (Mn-TMPyP) in aqueous media have been studied. For MnIIITMPyP two water molecules ligate to the metal center and the formation constant(β2) is 0.11 in acetonitrile solution. The pKa1 and pKa2 for MnIIIIMPyP(H20)2 are 10.9 and 12.3, respectively in aqueous media. There is only one pKa at 11.7 for MnIIIMPyP(H2O)2. The pKa of the oxo-manganese(IV) porphyrin, O = MnIVTMPyP(H2O), is 11.3. MnIITMPyP demetallates rapidly to free base in acidic aqueous solution. MnIITMPyP also undergoes electrocatalysis for oxygen reduction. In acidic conditions, demetallation and catalysis rates are competitive. The transmetallation of MnTMPyP by Zn2+ can be achieved in the presence of thiols. The UV-Visible spectra in the reaction process suggest that the formation of some reactive intermediate is essential for the transmetallation.  相似文献   

15.
We report two new FeIII complexes [L1FeIII(H2O)](OTf)2 and [L2FeIII(OTf)] , obtained by replacing pyridines by phenolates in a known non-heme aminopyridine iron complex. While the original, starting aminopyridine [(L5 2 )FeII(MeCN)](PF6) complex is stable in air, the potentials of the new FeIII/II couples decrease to the point that [L2FeII] spontaneously reduces O2 to superoxide. We used it as an O2 activator in an electrochemical setup, as its presence allows to generate superoxide at a much more accessible potential (>500 mV gain). Our aim was to achieve substrate oxidation via the reductive activation of O2. While L2FeIII(OTf) proved to be a good O2 activator but a poor oxidation system, its association with another complex (TPEN)FeII(PF6)2 generates a complementary tandem couple for electro-assisted oxidation of substrates, working at a very accessible potential: upon reduction, L2FeIII(OTf) activates O2 to superoxide and transfers it to (TPEN)FeII(PF6)2 leading in fine to the oxidation of thioanisole.  相似文献   

16.
17.
The actinide(III) hexacyanoferrates AmIII/FeII(CN)6 and CfIII/FeII(CN)6 are structurally characterized by IR and X‐ray absorption spectroscopy.  相似文献   

18.
A bulky bidentate ligand was used to stabilize a macrocyclic [FeIII8CoII6] cluster. Tuning the basicity of the ligand by derivatization with one or two methoxy groups led to the isolation of a homologous [FeIII8CoII6] species and a [FeIII6FeII2CoIII2CoII2] complex, respectively. Lowering the reaction temperatures allowed isolation of [FeIII6FeII2CoIII2CoII2] clusters with all three ligands. Temperature‐dependent absorption data and corresponding experiments with iron/nickel systems indicated that the iron/cobalt self‐assembly process was directed by the occurrence of solution‐state electron‐transfer‐coupled spin transition (ETCST) and its influence on reaction intermediate lability.  相似文献   

19.
We report on the synthesis and characterization of three iron(III) phosphasalen complexes, [FeIII(Psalen)(X)] differing in the nature of the counter-anion/exogenous ligand (X=Cl, NO3, OTf), as well as the neutral iron(II) analogue, [FeII(Psalen)] . Phosphasalen (Psalen) differs from salen by the presence of iminophosphorane (P=N) functions in place of the imines. All the complexes were characterized by single-crystal X-ray diffraction, UV/Vis, EPR, and cyclic voltammetry. The [FeII(Psalen)] complex was shown to remain tetracoordinated even in coordinating solvent but surprisingly exhibits a magnetic moment in line with a FeII high-spin ground state. For the FeIII complexes, the higher lability of triflate anion compared to nitrate was demonstrated. As they exhibit lower reduction potentials compared to their salen analogues, these complexes were tested for the coupling of 2-naphthol using O2 from air as oxidant. In order to shed light on this reaction, the interaction between 2-naphthol and the FeIII(Psalen) complexes was studied by cyclic voltammetry as well as UV/Vis spectroscopy.  相似文献   

20.
Bistability of the four cis/trans isomers of the proposed iron-cobalt binuclear complex [(CO)2(benzoate-)FeII/III(-terephthalate-)CoIII/II(-benzoate)(CO)2]1+, arising from the FeII/III ↔ CoIII/II intramolecular charge transfer (IMCT) is investigated computationally at (TD)DFT-B3LYP/LanL2DZ level of theory. Energies, geometries, atomic charges, and the UV-Vis spectra are considered in this investigation. Results approve IMCT bistability of all cis/trans isomers by locating two stable states with distinctly different structures and charge distributions (FeII-CoIII and FeIII-CoII oxidation states). Also, well-defined first-order saddle points between these two IMCT states are found and characterized using QST2/QST3 method. Based on the analysis of the calculated charge distributions and the 0.35-1.66 eV activation (barrier) energies of the FeII-CoIII ↔ FeIII-CoII IMCT reactions, it can be predicted that electric field or NIR radiation may be used to switch between the two IMCT states of this bistable binuclear complex. It is also found that the cis/trans isomerization has significant effects on the energetics of this IMCT reaction, and that the trans-FeII/III-trans-CoIII/II isomer is the best candidate for prospective switching application due to having the least energy dissipation and the largest charge transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号