首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An ethylene-hexene copolymer was fractionated into five fractions and the density of short-chain branches was measured for each fraction. The slow crack growth behavior was measured on each fraction by sandwiching the small amount of fractionated resin of about 0.2 g between polyethylene grips. The resistance to slow crack growth was negligible for the three fractions whose Mw was less than 1.5 × 105. For the fourth fraction with Mw greater than 1.5 × 105, the resistance to slow crack growth was very high, being greater than that for the whole resin even though its density of short-chain branches was less than that of the whole resin. It is concluded that a molecular weight greater than 1.5 × 105 is required to create the number of tie molecules that is necessary to produce a high resistance to slow crack growth in this particular copolymer. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
3.
A quenched ethylene-hexene copolymer was annealed in the temperature range of 86 to 127°C. The morphological changes were monitored by differential scanning calorimetry (DSC) and density. The slow crack growth resistance tested at 80°C was a maximum at an annealing temperature of 113°C and a minimum of 123°C. The lifetimes can be varied by more than a factor of 20 depending on the thermal treatment. The increase in slow crack growth resistance between 86 and 113°C is attributed to an increase in the strength of the crystals by becoming more perfect and to the conversion of loose tie molecules into taut tie molecules. The decrease in strength between 113 and 123°C is attributed to the decrease in tie molecules when a large fraction of the as-quenched crystals begin to melt.  相似文献   

4.
While consideration of the crystalline domains have long dominated research in understanding the properties of semicrystalline polymers, a satisfactory understanding of crack growth in these materials can only be realized by developing corresponding analytical tools to characterize the amorphous region. Since slow stable cracks in these materials preferentially form between crystalline lamellae, the role of tie molecules—the amorphous chains that bridge crystalline lamellae—are particularly important in this regard. Unfortunately, there is no method readily available for quantitative assessment of tie molecules. Through deformation and subsequent chlorination of polyethylene films, it is demonstrated that infrared dichroism can be used to determine relative tie-molecule concentration. Using this technique, one can a priori predict which resin in a series having comparable densities but widely varying molecular weights or comonomer distributions exhibits better crack resistance.  相似文献   

5.
The slow crack growth behavior of a linear polyethylene with different morphologies was studied by using three point bending with a single edge notched specimen at testing tem-peratures from 30 to 80°C. The morphology was varied by annealing the quenched material at temperatures from 86°C to 135°C. It was found that at test temperatures of 60°C or less, the changes in failure time with annealing temperature are very similar to the change in density with a maximum at 130°C. At testing temperatures above 60°C, the relationship of between failure time and annealing temperature is altered when the test is in the range of the α transition temperature. These results indicate that with respect to slow crack growth in the case of a homopolymer the strength of the crystals is relatively more important than the number of tie molecules. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
In this paper, two types of carbon black (CB) masterbatch with different carriers, i.e. HDPE and LDPE, are used to produce black compounds using three PE100 resins with various short chain branching distributions. Due to difference in short chain branch (SCB) distribution, the used polyethylene resins behave differently in microstructure development and long-term creep behavior. The microstructural analysis using different DSC techniques and rheological measurements revealed more sensitivity of the polyethylene resin with uniform comonomer distribution to the carbon black aggregates and their polymeric carriers. The Full Notched Creep Test (FNCT) was performed to determine the long-term creep performance of the black compounds; it is shown that the sample having more uniform comonomer distribution is more resistant compared to other samples. On the other hand, by addition of carbon black masterbatch, resistance to slow crack growth in samples decreases since carbon black aggregates can act as stress concentration spots in the structure. However, with addition of the masterbatch with LDPE carrier polymer, the reduction of this value in samples is lower compared to one with HDPE carrier. The reason for this observation is that long branches of LDPE polymer enter the structure of lamellae in the PE100 resins, making them more coherent and increasing the number of tie molecules. The samples that are blended with LDPE polymer have a rougher surface, which means linkage between two sides of crack was stronger due to higher entanglement density in these samples. The impact test confirms the same trend as FNCT test, with the sample containing LDPE carrier having higher impact strength.  相似文献   

7.
A solid state extrusion technique is applied as to produce oriented block copoly(ether ester) under various physical conditions. The morphology of the extruded samples is characterized in relation to the extrusion parameters and hard segment compositions of the polymer, using thermal analysis and X-ray methods. The lateral dimensions of the crystalline domains are found to be approximately 150 Å depending on the extrusion conditions. The statistics of the long range periodicity of the structure along the extrusion direction is in agreement with a one-dimensional two phase model, the crystalline portion of which does not vary much in thickness (35 – 45 Å). The unexpected increase in the long period and the thermal shrinkage suggest the existence of strained interlamellar amorphous chains (tie molecules). The observed variations in tensile properties are interpreted under the assumption that both the number of such tie molecules and their fully extended lengths are determined by the hard segment composition and the extrusion conditions. It is also argued that the increase in the glass transition temperature is not only a function of the composition of hard segments in the amorphous phase but also of the number of strained tie molecules.Herrn Dr. Dr. h. c. H. Hellmann zum 70. Geburtstag gewidmet.Part 3 cf. lit [11]  相似文献   

8.
Intercrystalline molecular connections in semicrystalline polymers have been the subject of numerous discussions and controversies. Nevertheless, there is one point of agreement: such intercrystalline tie molecules have a prime role in the mechanical and use properties of the materials, notably the resistance to slow crack growth. This article is a critical review of the mechanisms of generation of the tie molecules during the stage of crystallization and of the experimental and theoretical assessment of their concentration. Polyethylene and related materials are mainly studied. The contribution of chain entanglements is also discussed in parallel with tie molecules. Particular attention is paid to Huang and Brown's statistical approach, which appears to be the most appropriate one for predictive purposes and has aroused much interest from various authors. Attempts are made to provide solutions to the shortcomings of this model. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1729–1748, 2005  相似文献   

9.
The strength-limiting process in the fracture of semicrystalline fibers and highly oriented films is the rupture of tie molecules connecting the folded chain lamellae in the machine direction. This view is supported by the data on stress and temperature dependence of lifetime of fibers under load and on radical formation during the fracture experiment. The observed tensile strength, however, is about 10 times smaller and the number of fractured chains between 100 and 1000 times larger than expected on the basis of the known number of tie molecules in the fracture plane. This discrepancy is a consequence of the inhomogeneity of the micromorphology of fiber structure, which causes a much larger stress concentration on the most unfavorably located tie molecules than the average value one would expect in the case of perfectly uniform stress distribution on identical tie molecules. The fluctuation of amorphous layer thickness, of number and length of tie molecules, produces such a high stress concentration on some tie molecules throughout the sample that they rupture long before the average stress concentration is sufficient for chain fracture. By accumulation of damage caused by gradual chain rupture the weakening of the sample locally proceeds so far that at the maximum damage concentration, microcracks start to form, and the fiber breaks.  相似文献   

10.
The slow crack growth resistance was measured in an ethylene-octene copolymer as a function of the morphological changes produced by varying the thermal history. Morphology was varied by annealing the quenched state at temperatures between 86°C and the melting point. The slow crack growth behavior was measured by the lifetime of a notched tensile specimen under a constant load. In general, the lifetime exhibited a maximum at a critical value of the annealing temperature. This critical annealing temperature decreased with a decrease in the temperature at which the lifetime was measured. The former result is understandable in terms of the increase in crystal strength as the annealing temperature is increased and the decrease in the number of tie molecules when more material is melted as the annealing temperature increases. The latter result depends on the relationship between crystal size and the effect of testing temperature. Differential scanning calorimetry data played a key part in analyzing the results. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
Our past paper reported that the postyielding deformation of crystalline polymers such as polyethylene (PE), poly(oxymethylene) (POM), poly(propylene) (PP) and nylon 6 (Ny 6) was expressed by master curves with a characteristic constant for each polymer when normalized true stress and true strain are plotted in both logarithmic graphs and suitably shifted. For a molecular understanding of the postyielding process, we present a tie molecule model which assumes that the tie molecules are pulled out from the lamellar fragment at a constant number of tie molecules. The limit in applicability of the model is in the final stage of fiber formation. Fundamental equations of the model are solved to give a critical point at which all the molecular parameters can be uniquely determined from the characteristic constant for each polymer. At the critical point, the tie molecule length monotonously increases at a fixed number of tie molecules. The limit of the tie molecule length increases in the order of PE, POM, PP and Ny 6. By using an empirical relationship between the area fraction of tie molecules and the degree of crystallinity of these polymers, it is found that the order of area fraction of the tie molecules in Ny 6, PP, POM and PE is entirely reversed to the order of weight fraction of the tie molecules of the above polymers.  相似文献   

12.
This paper gives a review of the results of investigation of the effect of crosslinking on the properties of LDPE/PPa) blends and LDPE filled with particulate silica. Tensile and impact properties, crystallization behaviour, crosslinked portion formation and crack growth rate have been investigated. Crosslinking results in an increased compatibility of originally incompatible LDPE/PP blends apparently due to an in situ formation of a compatibilizer, leading to improved deformability and better impact resistance. Changes in the morphology as revealed by crystallization behaviour, and the increased number of tie molecules in amorphous region due to crosslinking result in better impact resistance of LDPE/silica mixtures, as well as to the improvement of other properties of two-phase materials, so as resistance to grack growth.  相似文献   

13.
Two kinds of ultrahigh-molecular-weight linear polyethylene (UHMW PE), together with conventional high-density polyethylene (HDPE), were subjected to β irradiation, and changes in their properties were monitored. Elastic modulus increased steadily with dose for all materials, as did the yield stress. A dramatic rise of density with dose was observed in the UHMW PE specimens accompanied by a corresponding increase in heat of fusion, x-ray crystallinity, and peak melting temperature. The magnitude of such changes in HDPE was much smaller. In UHMW PE specimens, the x-ray long period simultaneously decreased but crystal thickness remained constant. No changes in long period occurred in HDPE. The effects are attributed to the scission of tie molecules in UHMW PE followed by a growth in the perfection of the crystal lamellae, and suggest a method for assessing the tie-molecule content of such materials.  相似文献   

14.
In this work, a short time test method to determine the slow crack growth behaviour of samples made out of pipes was evaluated. The cracked round bar (CRB) method used provides results below 48 h with brittle fracture surfaces, which indicates the type of slow crack growth failure. To evaluate the usability of the method, the results were compared with well-known tests such as notch pipe test, 2 notch creep test and instrumented Charpy impact tests. The results indicate that the CRB test can be used to predict long term slow crack growth behaviour of PE pipes.  相似文献   

15.
Currently, several testing methods are under development to understand the resistance of polyethylene pipe materials to slow crack growth over comparably short time periods without using aggressive chemicals to accelerate the time to brittle failure. Strain hardening and crack round bar tests have recently been developed and published as ISO testing methods. However, a better understanding of these testing methods is still required with respect to the molecular parameters of the materials. Comparative studies with existing slow crack growth testing methods such as the notched pipe test are of significant interest to the industry. This study discusses correlations of molecular weight, molecular weight distribution, short chain branching and rheological properties of different polyethylene materials with their slow rack growth resistances obtained from the strain hardening and crack round bar tests and their correlations with notched pipe tests.  相似文献   

16.
The β‐crystalline form of isotactic poly(propylene) (PP) has been long recognized to have a greater mechanical absorption capacity than the α‐crystalline form. This is of major importance for improving impact properties and crack resistance of injection‐molding parts. Unfilled PP samples together with calcium carbonate‐filled PP samples having various β/α‐phase ratios, with nearly constant morphological parameters, have been investigated from the standpoint of ductile crack propagation and impact behavior. The presence of the β‐crystalline phase turned out to improve both properties. The β spherulites are notably more prone to craze initiation than α spherulites that display a propensity for cracking. Subsequent crack propagation appears to be faster in the latter ones. The plastic zone ahead from the crack tip broadens, and the specific plastic energy increases with increasing β‐phase content. The lower elastic limit of the β phase is likely to promote the early crazing. However, the suspected higher density of tie molecules in β spherulites provides more numerous and stiffer microfibrils. The impact strength of PP is also improved by the presence of β crystals as a result of greater energy‐absorption capabilities. However, filled samples turned out insensitive to the β phase. A discussion is made about the origins of the β‐phase‐induced improvement of the mechanical properties. The possible role of the β → α transition is also explained. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 31–42, 2002  相似文献   

17.
A model of environmental craze growth has been developed based on the customary meniscus (or Rayleigh-Taylor) instability model of craze propagation but allowing for the possibility that environmental plasticization may cause the active layer of material adjacent to the craze to be of significant thickness with respect to the fibril spacing. Initially, as the active layer thickness increases, the fibril growth rate increases at constant fibril spacing, but eventually the fibril spacing comes to be controlled only by the active layer thickness and not by the surface tension and stress. This model of craze growth has been coupled to a model of stress-enhanced case II diffusion that is itself based on the Thomas-Windle model. Two main regimes of craze thickness growth are distinguished. In one the craze growth rate is controlled by the velocity of the diffusion front, the meniscus instability growth rate is assumed to be relatively slow, so that a significant plasticized active layer exists whose thickness assures that the meniscus instability front travels at the same speed as the diffusion front. In the other regime the propagation of the craze front is sufficiently fast that it also forms the diffusion front, so the growth rate is controlled by a combination of the two processes: diffusion and meniscus instability.  相似文献   

18.
The angular dependence of scattering intensity of drawn polyethylene (PE) was investigated with a small-angle Kratky camera. At constant drawing temperature the intensity drops drastically with increasing draw ratio; however, the position and the half-width of the first maximum remain nearly unchanged. The drop in intensity can be explained only by a reduction of effective electron density difference between amorphous and crystalline components. The latter contains more vacancies, and the former contains more and better packed tie molecules. This increases the average density of the amorphous layer and decreases that of the crystalline component. As the temperature of the drawing increases, the draw ratio attainable at the applied draw rate drops and the intensity of scattering and the long period rapidly increase. In addition, a second-order maximum appears, indicating a better order of lamellar stacking, in good agreement with electron microscopy. The first annealing effect is an extremely rapid increase in scattering intensity and long period. The subsequent increase is rather slow and proportional to the logarithm of annealing time. The long period in such an experiment is independent of the draw ratio; however, the scattering intensity depends on it quite strongly even after prolonged annealing.  相似文献   

19.
The geometrical constraints acting on sections of tie molecules in noncrystalline regions severely limit the number and type of available polymer chain conformations. It is shown that these constraints induce explicit correlations in the rotations about the backbone bonds. These correlated rotations, in turn, specify distinct structural conversion paths which define the molecular mechanisms underlying the deformation response of tie molecules. Application of these constraining relationships to highly oriented polyethylene shows that the kink and jog structures of tie molecules can be decomposed into combinations of three primary conformational building blocks. Each of the basic conformational subunits follow an explicit set of dihedral angle correlations and, consequently, imparts specific characteristics to the composite structure of tie molecules. It is proposed that the composite response characteristics of tie molecules can be described as linear combinations of the response characteristics of these three primary conformational subunits.  相似文献   

20.
The authors present the results of molecular dynamics simulations of polymer films confined by smooth walls. Simulations were performed for a wide range of chain lengths covering both nonentangled and entangled regions, as well as film thicknesses ranging from the order of unperturbed chain size to the bulk state. The simulation results for the chain size dependence on the film thickness are compared with the prediction of the scaling model. By measuring the correlation function of the end-to-end vectors, we have determined the relaxation time of confined polymer chains in different entangled states. It is shown that there is a minimum in the relaxation time of long chains when decreasing the film thickness, which is partially due to the confinement-induced disentanglement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号