首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

2.
The synthesis, characterization, and C(sp2)?CF3 reductive elimination of stable aryl[tris(trifluoromethyl)]cuprate(III) complexes [nBu4N][Cu(Ar)(CF3)3] are described. Mechanistic investigations, including kinetic studies, studies of the effect of temperature, solvent, and the para substituent of the aryl group, as well as DFT calculations, suggest that the C(sp2)?CF3 reductive elimination proceeds through a concerted carbon–carbon bond‐forming pathway.  相似文献   

3.
Iridium-catalyzed borylations of aromatic C−H bonds are highly attractive transformations because of the diversification possibilities offered by the resulting boronates. These transformations are best carried out using bidentate bipyridine or phenanthroline ligands, and tend to be governed by steric factors, therefore resulting in the competitive functionalization of meta and/or para positions. We have now discovered that a subtle change in the bipyridine ligand, namely, the introduction of a CF3 substituent at position 5, enables a complete change of regioselectivity in the borylation of aromatic amides, allowing the synthesis of a wide variety of ortho-borylated derivatives. Importantly, thorough computational studies suggest that the exquisite regio- and chemoselectivity stems from unusual outer-sphere interactions between the amide group of the substrate and the CF3-substituted aryl ring of the bipyridine ligand.  相似文献   

4.
Proton and boron-11 magnetic resonance spectra for several potassium para-substituted tetraarylborate compounds [KB(C6H4-pX)4, where X is H, OCH3, CH3, Br, Cl, F, CF3] have been obtained. The chemical shift between the centers of the AA′ and XX′ multiplets for the ring proton multiplets, relative to a reference chemical shift of 0·39 ppm for potassium tetraphenylborate, correlated with the corresponding Hammett σ values for the para-substituent. Additionally, the boron-11 chemical shifts gave a good correlation with corresponding σ values for the substituents. Electronegativities of para-substituted phenyl rings were calculated and found to be approximately 2·70 for all compounds studied. It was shown that electronic substituent effects do not greatly influence the electron density surrounding the central boron atom in the tetraarylborate ions.  相似文献   

5.
13C substituent shifts in para-substituted phenyl and 2-phenylethenyl carbenium ions have been studied within the general model of para-disubstituted benzenes X? C6H4? Y. Large variations are observed for the ipso shifts induced by the Y substituents (Y = NO2. … OCH3) depending upon the electron demand at the remote carbenium centre. A good representation of these substituent-substituent interactions is obtained by a treatment derived from ‘proportionality relationships’, where the deviations from strict additivity are factorized into two terms characterizing, respectively, the influence of the fixed X group on the ring and the susceptibility of the incoming Y substituent. Continuity of the ipso shift variations in an extended range is demonstrated, without break-off between neutral polarized systems or ions as the electronic influence of the fixed X group increases.  相似文献   

6.
Binding of alkali metal cations (AMCs) by 1,3-alternate, ionised calix[4]arene-benzocrown-6 ligands was investigated by isothermal calorimetric titration in methanol. The groups of –C(O)NHSO2CH3 and more acidic –C(O)NHSO2CF3 were attached to the 1,3-alternate calix[4]arene-benzocrown-6 skeleton in two locations. In one series, the acidic group was attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether cavity. In the other series, the ionisable group was a substituent on the benzo group in the polyether ring. This oriented the acidic group away from the crown ether cavity. For these calixcrown ligands, the effects of the location of the ionisable group and its acidity and the identity of the AMC on the binding constant, enthalpy and entropy of complexation are assessed.  相似文献   

7.
The acid-catalyzed hydrolysis of CF3CHN2 ( 1 ) follows an A2 mechanism of preequilibrium protonation and rate-determining solvolysis of the intermediate diazonium ion 4 ; this was demonstrated by: (a) the inverse kinetic isotope effect; (b) H-D exchange; (c) the unimportance of general acid catalysis; (d) strong rate acceleration by added nucleophiles. The activation parameters have been determined in two solvent systems. In contrast to 1 the secondary diazocompound CF3? CN2? CH3 ( 2 ) follows the normal A-SE2 mechanism of rate-determining proton transfer.  相似文献   

8.
Synthesis, Crystal Structure and Magnetic Behaviour of Gd(CF3CF2COO)3(H2O)3 Single crystals of Gd(CF3CF2COO)3(H2O)3 have been obtained by reaction of Gd2O3 with an aqueous solution of CF3CF2COOH. The compound crystallizes triclinically in the space group (No. 2; Z = 2; a = 928.5(1) pm, b = 1037.1(1) pm, c = 1147.3(2) pm, α = 90.44(2)°, β = 108.56(1)°, γ = 106.49(1)°). In the crystal structure the gadolinium ions are bridged by carboxylate groups to dimers and are coordinated eightfold by oxygen atoms. The magnetic behaviour was investigated in the temperature range of 1.77 to 300 K. The magnetic data indicate weak antiferromagnetic interactions within the dimeric unit (Jex = ?0.0057 cm?1).  相似文献   

9.
A series of three Mo2 dimers bridged by a meta-phenylene group has been studied in terms of electronic coupling (EC) and electron transfer (ET) in comparison with the para isomers. Optical analyses on the mixed-valence complexes indicate that by replacing a para-phenylene bridge with a meta one, the EC between the two Mo2 centers is dramatically weakened; consequently, the ET rates (ket) are lowered by two to three orders of magnitude. In the para series, the EC parameters (Hab) and ET rates (ket) are greatly affected by O/S atomic alternation of the bridging ligand. However, for the meta analogues, similar EC and ET parameters are obtained, that is, Hab=300–400 cm−1 and ket≈109 s−1. These results suggest that through-σ-bond and/or through-space coupling channels become operative as the π conjugation is disabled. DFT calculations reveal that destructive quantum interference features seen for the meta series arise from the cancellation of two π-conjugated coupling pathways.  相似文献   

10.
The substitution kinetics of the complexes [Pt{4′‐(o‐CH3‐Ph)‐terpy} Cl]SbF6 (CH3PhPtCl(Sb)), [Pt{4′‐(o‐CH3‐Ph)‐terpy}Cl]CF3SO3 (CH3PhPtCl(CF)), [Pt(4′‐Ph‐terpy)Cl]SbF6 (PhPtCl), [Pt(terpy)Cl]Cl·2H2O (PtCl), [Pt{4′‐(o‐Cl‐Ph)‐terpy}Cl]SbF6 (ClPhPtCl), and [Pt{4′‐(o‐CF3‐Ph)‐terpy}Cl]SbF6 (CF3PhPtCl), where terpy is 2,2′:6′,2″‐terpyridine, with the nucleophiles thiourea (TU), N,N′‐dimethylthiourea (DMTU), and N,N,N′,N′‐tetramethylthiourea (TMTU) were investigated in methanol as a solvent. The substitution reactions of the chloride displacement from the metal complexes by the nucleophiles were investigated as a function of nucleophile concentration and temperature under pseudo‐first‐order conditions using the stopped‐flow technique. The reactions followed the simple rate law kobs = k2[Nu]. The results indicate that the introduction of substituents in the ortho position of the phenyl group on the ancillary ring of the terpy unit does influence the extent of π‐backbonding in the terpy ring. This controls the electrophilicity of the platinum center, which in turn controls the lability of the chloro‐leaving group. The strength of the electron‐donating or ‐withdrawing ability of the substituents correlates with the reactivity of the complexes. Electron‐donating substituents decrease the rate of substitution, whereas electron‐withdrawing substituents increase the rate of substitution. This was supported by DFT calculations at the B3LYP/LACVP+** level of theory, which showed that most of the electron density of the HOMO is concentrated on the phenyl ligand rather than on the metal center in the case of the strongest electron‐withdrawing substituent in CF3PhPtCl. The opposite was found to be true with the strongest electron‐donating substituent in CH3PhPtCl. Thiourea was found to be the best nucleophile with N,N,N′,N′‐tetramethylthiourea being the weakest due to steric effects. The temperature dependence studies support an associative mode of activation. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 808–818, 2008  相似文献   

11.
On the Photochemistry of 1H- and 2H-Indazoles in Acidic Solution It is shown that 1H- and 2H-indazoles (cf. Scheme 2) on protonation (0, 1N H2SO4 in water or alcoholic solution) give analogous indazolium ions (see Fig. 1 and 2) which on irradiation undergo heterolytic cleavage of the N (1), N (2) bond whereby aromatic nitrenium ions in the singlet ground state are formed (cf. Scheme 13). If the para position of these nitrenium ions is not occupied by a substituent (e.g. a methyl group) they are readily trapped by nucleophiles present (e.g. water, alcohols, chloride ions) to yield the corresponding 5-substituted 2-amino-benzaldehydes or acetophenones (cf. Schemes 4–10). Photolysis of indazole ( 4 ) and 3-methyl-indazole ( 5 ) in 0,75N H2SO4 in alcoholic solutions gives in addition minor amounts of the corresponding 3-substituted 2-amino-benzaldehydes and acetophenones, respectively (cf. Schemes 6 and 8 and Table 2). Phenylnitrenium ions carrying a methyl group in the para position give in aqueous sulfuric acid mainly the reduction products, i.e. 2-amino-5-methyl-benzaldehydes (cf. Schemes 11 and 12 and Table 3). In methanolic sulfuric acid, in addition to the reduction products, 6-methoxy substituted benzaldehydes are found (cf. Schemes 11 and 12 and Table 3) which are presumably formed by an addition-elimination mechanism (cf. Scheme 18). It is assumed that precursors of the reduction products are the corresponding nitrenium ions in the triplet ground state. Singlet-triplet conversion of the nitrenium ions may become efficient when addition of nucleophiles to the singlet nitrenium ions is reversible (cf. Scheme 22) thus, enhancing the probability of conversion or when conjugation in the singlet nitrenium ions is disturbed by steric effects (cf. Scheme 20) thus, destabilizing the singlet state relative to the triplet state.  相似文献   

12.
The 13C NMR chemical shifts of m- and p-substituted benzyl N,N-dimethylcarbamates were measured in CDCl3. The meta and para 13C substituent chemical shifts were analysed by means of dual substituent parameter (DSP) equations. Good correlations were obtained, especially for the para-carbon substituent chemical shifts. The computed transmission coefficients, ρI and ρR, are consistent with the general features of the fitting parameters. It has been shown that no significant electron demand is imposed by the ? CH2OCON(CH3)2 substituent.  相似文献   

13.
The mechanism of the formation of [C7H8]+ ions by hydrogen rearrangement in the molecular ions of 1-phenylpropane and 1,3-diphenylpropane has been investigated by looking at the effects of CH3O and CF3 substituents in the meta and para positions on the relative abundances of the corresponding ions and on the appearance energies. The formation of [C7H8]+ ions from 1,3-diphenylpropane is much enhanced at the expense of the formation of [C7H7]+ ions by benzylic cleavage, due to the localized activation of the migrating hydrogen atom by the γ phenyl group. A methoxy substituent in the 1,3-diphenylpropane, exerts a site-specific influence on the hydrogen rearrangement, which is much more distinct than in 1-phenylpropane and related 1-phenylalkanes, the rearrangement reaction being favoured by a meta methoxy group. The mass spectrum of 1-(3-methoxyphenyl)-3-(4-trideuteromethoxyphenyl)-propane shows that this effect is even stronger than the effect of para methoxy groups on the benzylic cleavage. From measurements of appearance potentials it is concluded that the substituent effect is not due to a stabilization of the [C7H7X]+ product ions. Whereas the [C7H7]+ ions are formed directly from molecular ions of 1-phenylpropane and 1,3-diphenylpropane, the [C7H8]+ ions arise by a two-step mechanism in which the s? complex type ion intermediate can either return to the molecular ion or fragment to [C7H8]+ by allylic bond cleavage. Obviously the formation of this s? complex type ion, is influenced by electron donating substituents in specific positions at the phenyl group. This is borne out by a calculation of the ΔHf values of the various species by thermochemical data. Thus, the relative abundances of the fragment ions are determined by an isomerization equilibrium of the molecular ions, preceding the fragmentation reaction.  相似文献   

14.
The mass spectra of a series of ortho, meta and para substituted isopropyl benzene derivatives have been determined where the second substituent is ? COOH, ? C(O)NH2, ? C(O)C6H5, ? C(Ph)(=NPh) or ? CH(Ph)(NHPh). Two bis-isopropylbenzophenones have also been studied. The spectra are characterized by prominent ortho effects which distinguish the ortho derivatives from the meta and para.  相似文献   

15.
Two series of 4‐substituted N‐[1‐(pyridine‐3‐ and ‐4‐yl)ethylidene]anilines have been synthesized using different methods of conventional and microwave‐assisted synthesis, and linear free‐energy relationships have been applied to the 13C NMR chemical shifts of the carbon atoms of interest. The substituent‐induced chemical shifts have been analyzed using single substituent parameter and dual substituent parameter methods. The presented correlations describe satisfactorily the field and resonance substituent effects having similar contributions for C1 and the azomethine carbon, with exception of the carbon atom in para position to the substituent X. In both series, negative ρ values have been found for C1′ atom (reverse substituent effect). Quantum chemical calculations of the optimized geometries at MP2/6‐31G++(d,p) level, together with 13C NMR chemical shifts, give a better insight into the influence of the molecular conformation on the transmission of electronic substituent effects. The comparison of correlation results for different series of imines with phenyl, 4‐nitrophenyl, 2‐pyridyl, 3‐pyridyl, 4‐pyridyl group attached at the azomethine carbon with the results for 4‐substituted N‐[1‐(pyridine‐3‐ and ‐4‐yl)ethylidene]anilines for the same substituent set (X) indicates that a combination of the influences of electronic effects of the substituent X and the π1‐unit can be described as a sensitive balance of different resonance structures.  相似文献   

16.
The electronic influence of substituents on the free enthalpy of rotation around the N? B bond in aminoboranes was investigated in two series of compounds: (a) (CH3)2N?BCl (phenyl-p-X), containing the para-phenyl substituent at the boron atom, and (b) (p-X-phenyl)CH3N?B(CH3)2, containing the para-phenyl substituent at the nitrogen atom of the N? B linkage (X = ? NR2, ? OCH3, ? C(CH3)3, ? Si(CH3)3, ? H, ? F, ? Cl, ? Br, ? I, ? CF3 and ? NO2). By comparing the rotational barriers in corresponding compounds of both series, a reverse effect of the substituents could be observed. Electron-withdrawing substituents in the para position of the phenyl ring increase the ΔGc if the phenyl group is attached to the boron atom; on the other hand, a lower ΔGc is observed if the phenyl ring is bonded to the nitrogen atom of the N? B system. Substitution of the phenyl ring with electron-donating substituents in the paraposition exerts the opposite effect. Within each series of compounds, the differences of ΔGc values [δ(ΔGc) = ΔGc (X) ? ΔGc (X = H)] between substituted and unsubstituted compounds can be explained in terms of inductive and mesomeric effects of the ring substituents and can be correlated with the Hammett σ constant of each substituent. A comparison of the slopes of the plotted lines shows that the influence of the ring substituents is more pronounced in compounds with N-phenyl-p-X than in those with B-phenyl-p-X.  相似文献   

17.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

18.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

19.
The 1H, 13C and 77Se chemical shifts and the 1J[C(Me)H(Me)], 1.2J(SeC) and 2J(SeH) coupling constants in 14 para- or meta-substituted selenoanisoles, R? C6H4? Se? CH3, have been measured and the dependence of these parameters on the electronic effects of the substituent R is discussed. A significant (up to 6 ppm) deviation from additivity of the substituent influence on the shielding of the 13C ring carbons has been found.  相似文献   

20.
The effect of fluorine as a substituent group on nucleophilic aromatic substitution is discussed, where a fluorine atom located ortho to the point of substitution may be of variable activating influence, whereas fluorine located para is slightly deactivating and meta is activating. A rationale of these effects is presented and evidence to support polar influences by ortho fluorine is advanced. The influence of CN, CF3, CF2H and CFH2 is also established by comparison of appropriate measured rate constants and compared with the activation effects of ring nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号