首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

2.
The rearrangement reactions following electron ionization in a number of aryl substituted conjugated nitriles have been studied using labelled compounds and collisional activation (CA) spectroscopy. The results indicate that α-phenyl cinnamonitriles and 9,10-dihydro-9-cyanophenanthrene rearrange to a common intermediate which loses CH3˙ or CH2CN˙ to give the ions at m/z 190 and 165. The CA spectrum of the deuterated analogue (compound 2) shows that there is a complete hydrogen scrambling prior to the loss of the CH3˙ radical. The fluoroderivatives (compounds 5 and 6) behave similarly to the parent nitrile. The introduction of chlorine or bromine into the aromatic ring alters the fragmentation pattern and the only favoured decomposition pathway is the loss of a halogen radical. The CA spectra of the doubly charged ions at m/z 102 and 88 are also discussed. The CA spectrum of the M +˙ ion 1,1-dicyano-2-phenyl ethylene is characterized by the presence of a rearrangement ion atm/z 103 (PhCN+ ˙).  相似文献   

3.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

4.
Tertiary α-carbomethoxy-α,α-dimethyl-methyl cations a have been generated by electron impact induced fragmentation from the appropriately α-substituted methyl isobutyrates 1–4. The destabilized carbenium ions a can be distinguished from their more stable isomers protonated methyl methacrylate c and protonated methyl crotonate d by MIKE and CA spectra. The loss of I and Br˙ from the molecular ions of 1 and 2, respectively, predominantly gives rise to the destabilized ions a, whereas loss of Cl˙ from [3]+ ˙ results in a mixture of ions a and c. The loss of CH3˙ from [4]+˙ favours skeletal rearrangement leading to ions d. The characteristic reactions of the destabilized ions a are the loss of CO and elimination of methanol. The loss of CO is associated by a very large KER and non-statistical kinetic energy release (T50 = 920 meV). Specific deuterium labelling experiments indicate that the α-carbomethoxy-α,α-dimethyl-methyl cations a rearrange via a 1,4-H shift into the carbonyl protonated methyl methacrylate c and eventually into the alkyl-O protonated methyl methacrylate before the loss of methanol. The hydrogen rearrangements exhibit a deuterium isotope effect indicating substantial energy barriers between the [C5H9O2]+ isomers. Thus the destabilized carbenium ion a exists as a kinetically stable species within a potential energy well.  相似文献   

5.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) induces N–Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c′/z? fragment pair. Subsequently, the z? generates z′ and [z + matrix] fragments via further radical reactions because of the low stability of the z?. In the present study, we investigated MALDI‐ISD of a cyclic peptide. The N–Cα bond cleavage in the cyclic peptide by MALDI‐ISD produced the hydrogen‐abundant peptide radical [M + 2H]+? with a radical site on the α‐carbon atom, which then reacted with the matrix to give [M + 3H]+ and [M + H + matrix]+. For 1,5‐diaminonaphthalene (1,5‐DAN) adducts with z fragments, post‐source decay of [M + H + 1,5‐DAN]+ generated from the cyclic peptide showed predominant loss of an amino acid with 1,5‐DAN. Additionally, MALDI‐ISD with Fourier transform‐ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H]+ and [M + H]+ with two 13C atoms. These results strongly suggested that [M + 3H]+ and [M + H + 1,5‐DAN]+ were formed by N–Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N–Cα bond during MALDI‐ISD could be estimated by the ratio of the intensity of [M + H]+ and [M + 3H]+ in the Fourier transform‐ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg‐Gly‐Asp‐D‐Phe‐Val) was correlated to its tendency to cleave the N–Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N–Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The fragmentation of four α-diazosulphones under conditions of electron-impact was studied with the aid of high resolution mass measurements and the metastable defocusing technique. An important difference from the spectra of the related α-diazoketones is the absence of peaks for [M ? N2]. Metastables show, however, that these fragments probably exist as intermediates.  相似文献   

7.
The collision-induced dissociation mass-analysed ion kinetic energy (CID MIKE) spectra (electron impact and chemical ionization) of five α-diazo-ω-arylsulphonylaminoalkan-2-ones and corresponding N-arylsulphonylazetidin-3-ones and N-arylsulphonylpyrrolidin-3-ones were studied. The [M ? N2]+˙ and [MH ? N2]+ ions of two types of the diazo ketones provide CID MIKE spectra similar to those of the corresponding M+˙ and MH+ of the heterocyclic compounds, i.e. a cyclization analogous to that in solution takes place. For the other three types of diazo compounds the Wolff rearrangement prevails in both the gas and liquid phases. The effect of the substituents on the cyclization process was studied. The data obtained permit the results of acid-catalysed cyclization of similar diazo ketones to be predicted on the basis of their CID MIKE spectra. Chemical ionization provides a closer similarity with reactions in solution than electron impact ionization, which can be rationalized by the protonation of the diazo ketone molecule being the driving force of the cyclization reaction either in solution or in the ion source of a mass spectrometer.  相似文献   

8.
The IR. spectra of α-thenoyl-trifluoroacetone (HTTA) and seventeen of its chelates with metal(II) and -(III) ions of the first transition series have been determined. Three series of complexes are represented: the anhydrous metal(II) species, [M(TTA)2]n (M ? Ca, Mn, Co, Ni, Cu, Zn); metal(II) dihydrates, [M(TTA)2(H2O)2] (M ? Mn, Fe, Co, Ni, Zn); and the metal(III) chelates, [M(TTA)3] (M ? Sc, V, Cr, Mn, Fe, Ga). For each metal(II) complex, the spectra of the anhydrous and hydrated compounds are practically identical, suggesting that the anhydrous complexes have the polynuclear octahedral structure established for the corresponding acetylacetonates. Magnetic moment determinations reveal that complexes of the 3d4?3d7 ions all have spin-free configuration. Several vibrational bands with frequencies < 700 cm?1 are found to exhibit a frequency variation with d-orbital population which is consistent with the order of crystal field stabilization energies and hence with their assignment as coupled metal-oxygen stretching modes. Unique features of the spectra of [Cu(TTA)2] and [Mn(TTA)3] are ascribed to structural differences arising from Jahn-Teller distortion. Tentative assignments for the majority of the ligand vibrations are given.  相似文献   

9.
The relative importance of the rearrangement ions [M ? Br ? CO]+, [M ? Br2 ? CO]+ and [M ? HBr2 ? CO]+ in the mass spectra of the title compounds is compared with the amounts of α-methoxyketone formed on reduction of these compounds with a Zn/Cu couple in methanol. It is suggested that the quantitative correlation found reflects the electron releasing powers of the substituents on the α carbons.  相似文献   

10.
The mass spectral fragmentation of trihalogenated methyl esters, formed in the reactions of monochlorinated methyl propenoates and 2-butenoates with Cl2, BrCl and Br2, have been investigated. In most cases α-cleavage gives the base peak, [COOCH3]+, the peaks originating from the subsequent losses of one or two halogen atoms also being abundant. The primary loss of a halogen atom is more prominent in the C4 derivatives, Br˙ and Cl˙ being preferentially lost from the 2- and 3-positions, respectively. The McLafferty rearrangement yields in one case the base peak; the 2-halo compounds could in general be distinguished by that fragmentation. Typical for all 2-bromo-substituted methyl butanoates studied is the base peak, [C3H3]+, at m/z 39, and for some 3-halo compounds the peaks at m/z 95, [C2H4ClO2]+ and 139, [C2H4BrO2]+.  相似文献   

11.
The electron-impact (EI) mass spectral fragmentation of ten bis-O- (1-methylethylidene)fructopyranose derivatives and three related sugar sulfamates were investigated. In particular, 2,3:4,5-bis-O - (1-methylethylidene)-β-D-fructopyranose sulfamate (topiramate), a potent anticonvulsant, was examined in greater detail. The fragmentation of the 2,3:4,5-bis-O-(1-methylethylidene) fructopyranose derivatives in general was not very dependent on the nature of substitution; the mechanisms of the common and unique fragmentation patterns are presented. These compounds showed characteristic peaks at m/z [M – 15]+, [M – 15 – 58]+, [M – 15 – 58 – 60]+, [M ? CH2X]+ and [M ? CH2X – 58]+ where X = OSO2NR2 (R ? H, CH3, and/or Ph), OC (O)NHR, NH2, CI and OH. The fragmentation of isomeric bis-O-(1-methylethylidene) derivatives of aldopyranose, ketopyranose and ketofuranose sulfamates was also investigated. The results indicate that isomeric sugar sulfamates can be easily distinguished in the EI mode. Key fragmentation pathways are discussed for these compounds.  相似文献   

12.
Electron impact induced fragmentation of the title compounds obeys a route where the lactam moiety, OCNH, is cleaved first, with the accompanying formation of a cycloalkene ion. This can be verified by low-resolution, high-resolution, B/E and B2/E spectra as well as by collisional activation spectra of, for example, the ions m/z 82 and 67 from 7-azabicyclo[4.2.0]octan-8-one and from cyclohexene. The only, and fairly weak, fragment ions including O and N are [C3H3O]+, [CkH2k-2N]+ (k = 5–8) and [C3H6N]+. The ammonia chemical ionization spectra are also characteristic for all four lactams and show the same dominant ions in all cases, namely [M + 1]+, [M + 1 + NH3]+˙ and [2 M + 1]+˙.  相似文献   

13.
The substituent effect on the single and double hydrogen atom transfer reactions in para-substituted benzoic acid isobutyl esters has been investigated by electron impact mass spectrometry. Electron-donating substituents favour formation of the [M? C4H8]+˙ ion generated by single hydrogen atom transfer reaction (McLafferty rearrangement), whereas electron-withdrawing substituents favour formation of the [M? C4H7]+ ion generated by double hydrogen atom transfer reaction. In the case of the latter compounds, the m/z56 ([C4H8]+˙) ion, which is generated by single hydrogen atom transfer reaction with charge migration, is very intense, while in the former compounds, the m/z56 ion is very weak. These observations can be reasonably explained on thermochemical grounds based on the sum of the standard heats of formation of the fragments.  相似文献   

14.
A divergent method for the synthesis of α,α′‐diarylacenaphtho[1,2‐c]phosphole P‐oxides has been established; α,α′‐dibromoacenaphtho[c]phosphole P‐oxide, which was prepared through a TiII‐mediated cyclization of 1,8‐bis(trimethylsilylethynyl)naphthalene, underwent a Stille coupling with three different kinds of aryltributylstannanes to afford the α,α′‐diarylacenaphtho[c]phosphole P‐oxides in moderate to good yields. X‐ray crystallographic analyses and UV/Vis absorption/fluorescence measurements have revealed that the degree of π‐conjugation, the packing motif, the electron‐accepting ability, and the thermal stability of the acenaphtho[c]phosphole π‐systems are finely tunable with the α‐aryl substituents. All the P?O and P?S derivatives exhibited high stability in their electrochemically reduced state. To use this class of arene‐fused phosphole π‐systems as n‐type semiconducting materials, we evaluated device performances of the bulk heterojunction organic photovoltaics (OPV) that consist of poly(3‐hexylthiophene), an indene‐C70 bisadduct, and a cathode buffer layer. The insertion of the diarylacenaphtho[c]phosphole P‐oxides as the buffer layer was found to improve the power conversion efficiency of the polymer‐based OPV devices.  相似文献   

15.
Electron impact mass spectrometry of a range of amidines (R′NC(R)NHR′) including formamidines, acetamidines, benzamidines and tert-butylamidine, has been undertaken, and comparisons made of the fragmentation pathways followed by the different families of compounds. Fragmentation of all the molecular ions is characterized by skeletal carbon-nitrogen bond cleavage to form [R′NCR]+ and [R′NH]+ fragments, both of which are observed. For formamidines (R?H), the positive charge remains with the [R′NH]+ fragment which leads to the base peak at m/z93 corresponding to [R′NH2]+˙. In contrast, for acetamidines and benzamidines the charge prefers to remain with the [R′NCR]+ fragment which gives the base peak for these compounds. The spectra of unsubstituted amidines (HNC(R)NH2) are characterized by cleavage of the carbon substituent from the NCN skeleton, [CN2H3]+ (m/z 43) being produced in all cases.  相似文献   

16.
Reaction of 2,2-Dimethylpropylidynephosphine with Molybdenum Pentachloride; Crystal Structure of [Mo2Cl6(α,α′-dipyridyl)3] 2,2-Dimethylpropylidynephosphine and molybdenum pentachloride dissolved in POCl3 react with oxydation of the phosphorus and reduction of the molybdenum atom to give the alkyne complex [Mo2Cl4(μ-Cl)2(μ-H9C4? C?C? C4H9)(OPCl3)2]. Addition of α,α′-dipyridyl or of methyltriphenylphosphonium chloride in dichloromethane results in a displacement of the ligands POCl3 and H9C4? C?C? C4H9 from this complex and in the formation of [Mo2Cl6(dipy)3] or [(H5C6? )3P? CH3]3[Mo2Cl9]. Besides the latter compound small amounts of [(H5C6? )3P? CH3]2[MoCl6] can be isolated from the reaction mixture. [Mo2Cl6(dipy)3] which has already been prepared by other methods crystallizes in the monoclinic space group P21/c with {a = 1612; b = 148; c = 1296 pm; γ 109.3°; Z = 4} at 20°C. As shown by a crystal structure determination the complex is built up from [MoCl2(dipy)2]+ cations and [MoCl4(dipy)]? anions. The molybdenum atoms are both octahedrally surrounded. With average values of 238 and 243 pm the Mo? Cl bond distances in the cation, where a cis-arrangement of the chlorine atoms is observed, and in the anion differ significantly from each other. [Mo2Cl6(dipy)3] which has already been prepared by other methods crystallizes in the monoclinic space group P21/c with {a = 1612; b = 148; c = 1296 pm; γ = 109.3°; Z = 4} at 20°C. As shown by a crystal structure determination the complex is built up from [MoCl2(dipy)2]+ cations and [MoCl4(dipy)]? anions. The molybdenum atoms are both octahedrally surrounded. With average values of 238 and 243 pm the Mo? Cl bond distances in the cation, where a cis-arrangement of the chlorine atoms is observed, and in the anion differ significantly from each other.  相似文献   

17.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The mass spectra of diethyl phenyl phosphates show substituent effects with electron-donating groups favouring the molecular ion M+˙, and the [M? C2H4]+˙, [M – 2C2H4]+˙ and [XPhOH]+˙ ions. The [PO3C2H6]+ (m/z 109) and [PO3H2]+ (m/z 81) ions are favoured by electron-withdrawing groups. Results suggest that the formation of the [XPhC2H3]+˙ ion involves rearrangement of C2H3 to the position ortho to the phosphate group. Ortho effects are also observed.  相似文献   

19.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

20.
High resolution and metastable decomposition spectra of the ions [M + NH4]+ (and [M + ND4]+) formed by reaction of [NH4]+ (and [ND4]+) with cyclohexanone have been measured. The results provide evidence that the m/z 98 ion, which is abundant in the chemical ionization (NH3) spectrum of cyclohexanone, is in fact composed of two isobaric ions: a protonated imine ion and the molecular ion of cyclohexanone. The former is formed by a mechanism analogous to that occurring in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号