首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have investigated the effect of a series of 18 solvents and mixtures of solvents on the production of singlet molecular oxygen (O2(1Δg), denoted as 1O2) by 9H‐fluoren‐9‐one (FLU). The normalized empirical parameter E derived from ET(30) has been chosen as a measure of solvent polarity using Reichardt's betaine dyes. Quantum yields of 1O2 production (ΦΔ) decrease with increasing solvent polarity and protic character as a consequence of the decrease of the quantum yield of intersystem crossing (ΦISC). Values of ΦΔ of unity have been found in alkanes. In nonprotic solvents of increasing polarity, ΦISC and, therefore, ΦΔ decrease due to solvent‐induced changes in the energy levels of singlet and triplet excited states of FLU. This compound is a poor 1O2 sensitizer in protic solvents, because hydrogen bonding considerably increases the rate of internal conversion from the singlet excited state, thus diminishing ΦΔ to values much lower than those in nonprotic solvents of similar polarity. In mixtures of cyclohexane and alcohols, preferential solvation of FLU by the protic solvent leads to a fast decrease of ΦΔ upon addition of increasing amounts of the latter.  相似文献   

2.
Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1π-π*) and high energy 3n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0, which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with −OMe (Me=Methyl) or −F substitution at 2 or 2’ positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC). For unsubstituted thioxanthone and for isopropyl substitution at 2’ position, the S1-T1 gap is slightly positive ( ), rendering a lower triplet harvesting efficiency. For systems with −OMe or −F substitution at 3 or 3’ position of thioxanthone, because of buried π state and high energy π* state, the S1-3nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.  相似文献   

3.
The effect of β-cyclodextrin and β-hydroxypropyl-cyclodextrin on some properties of the aromatic ketone 1-H-phenalen-1-one and its sulfonate derivative 1-H-phen-alen-1-one-2-sulfonic acid was measured in aqueous solution. From the changes in the UV-visible range of the absorption spectra, the association equilibrium constants for the formation of inclusion complexes were determined. Because these ketones are very efficient sensitizers for the generation of singlet oxygen, time-resolved infrared luminescence was used to measure the lifetime of singlet oxygen in D2O. Cyclodextrins are weak deactivating agents of singlet oxygen; the upper limits for the bimolecular deactivation constants are 2 times 105M?1s?1 and 1 times 105M?1s?1 for β-cyclodextrin and β-hydroxypropyl-cyclodextrin, respectively. Besides, they do not affect noticeably the extent of formation of singlet oxygen; this result is explained in terms of relocation of the sensitizer (exit from the cyclodextrin cavity) in the triplet excited state.  相似文献   

4.
In the context of our studies on ruthenium(II) complexes containing polyazaheterocyclic ligands, we have determined the rate constants of quenching by molecular oxygen (kq) of the metal-to-ligand charge-transfer-excited state of a series of homoleptic [RuL3] complexes (where L stands for 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 2,2′-bipyrazine (bpz), 4,7-diphenyl-1,10-phenanthroline (dip), diphenyl-1,10-phenanthroline-4,7-disulfonate (dpds), and 1, 10-phenanthroline-5-octadecanamide (poda)) in H2O and in MeOH. These compounds are singlet-oxygen (O2(1Δg)) sensitizers, and quantum yields of singlet-oxygen production (ΨΔ) in both solvents are also reported. Values of kq and ΨΔ depend on the nature of the ligand L and on the solvent, ΨΔ values showing a large range of variation (0.2 to 1.0). In MeOH, the only pathway for quenching of the excited [RuL3] complexes by molecular oxygen is energy transfer: the fraction of quenched excited states yielding singlet oxygen (?) is unity for all compounds in the series investigated. Changing from MeOH to H2O has several remarkable effects: higher kq and lower ΨΔ values are observed; ? drops to ca. 0.5 except for [Ru(bpz)3]2+. In fact, [Ru(bpz)3]2+ is by far the weakest reductant in the series and behaves differently from the other complexes, with lowest kq and ΨΔ values and a ? equal to 1 in both solvents. Results are interpreted on the basis of the role played by charge-transfer interactions between the sensitizer excited state and molecular oxygen in the quenching mechanism. RuII Complexes based on the 4,7-diphenyl-1, 10-phenanthroline (dip) ligand are very efficient and stable singlet-oxygen sensitizers with ΨΔ values close to unity in air-saturated MeOH.  相似文献   

5.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

6.
The quantum yields of singlet oxygen formation (ØΔ) by the quenching of triplet states of organic sensitizers are measured at various concentrations of the sensitizers by using the time-resolved thermal lens method. Above a certain concentration, ØΔ is independent of the sensitizer concentration. Below the threshold, ØΔ gradually decreases as the concentration of the sensitizer decreases. The extrapolation of ØΔ to zero concentration indicates that singlet oxygen formation is not necessarily dominant in the quenching process even for the 3ππ* state in benzene.  相似文献   

7.
The synthesis, photophysical and photochemical properties of the tetra-substituted aryloxy gallium(III) and indium(III) phthalocyanines are reported for the first time. General trends are described for photodegradation, singlet oxygen, fluorescence, and triplet quantum yields and triplet lifetimes of these compounds. The introduction of phenoxy and tert-butylphenoxy substituents on the ring resulted in lowering of fluorescence quantum yields and lifetimes, and triplet quantum yields, and an increase of kIC, kISC, and kF. Photoreduction of the complexes was observed during laser flash photolysis. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.41 to 0.91. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

8.
A 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was attached to the bay position of perylene-3,4 : 9,10-bis(dicarboximide) (perylenebisimide, PBI) to study the radical-enhanced intersystem crossing (REISC) and electron spin dynamics of the photo-induced high-spin states. The dyads give strong visible light absorption (ϵ=27000 M−1 cm−1at 607 nm). Attaching a TEMPO radical to the PBI unit transforms the otherwise non-radiative decay of S1 state (fluorescence quantum yield: ΦF=2.9 %) of PBI unit to ISC (singlet oxygen quantum yield: ΦΔ=31.8 %, ΦF=1.6 %). Moreover, the REISC is more efficient as compared to the heavy atom effect-induced ISC (ΦΔ=17.8 % for 1,8-dibromoPBI). For the dyad, ISC takes 245 ps and triplet state lifetime is 1.5 μs, much shorter than the native PBI (τT=126.6 μs). X- and Q-band time-resolved electron paramagnetic resonance spectroscopy shows that the exchange interaction in the photoexcited radical-chromophore dyad is larger than the triplet zero-field splitting (ZFS) and the difference of Zeeman energies of the radical and chromophore. The inversion of electron spin polarization from emissive to absorptive was observed and attributed to the initial completion of the quartet state population and the subsequent depopulation processes induced by the zero-field splitting.  相似文献   

9.
采用密度泛函理论(DFT)UB3LYP方法对Ru在单重态、三重态及五重态势能面上催化N_2与H_2反应合成氨的两态反应机理进行理论研究,发现该反应为典型的两态反应。计算得到最低能量交叉点(MECP)处自旋-轨道耦合常数(H_(soc))及双程系间窜越几率(P~(ISC)),MECP1:H_(soc)=508.34 cm~(-1),P_2~(ISC)=0.85,MECP9:H_(soc)=269.21 cm~(-1),P_2~(ISC)=0.27。运用能量跨度模型(energetic span model)确定Ru催化合成氨反应的转化频率(TOF)决速过渡态(TDTS)为~3TS2-3,TOF决速中间体(TDI)为~3IM9。  相似文献   

10.
The quantum yield (ΦΔ) of singlet oxygen (O2(1Δg) production by 9H‐fluoren‐9‐one (FLU) is very sensitive to the nature of the solvent (0.02 in a highly polar and protic solvent, such as MeOH, to 1.0 in apolar solvents). This high sensitivity has been used for probing the interaction of FLU with micellar media and microemulsions based on anionic (sodium dodecyl sulfate, SDS; bis‐(2‐ethylhexyl)sodium sulfosuccinate, AOT), cationic (cetyltrimethylammonium chloride, CTAC) and nonionic (Triton X‐100, TX) surfactants. Values of ΦΔ of FLU vary in a wide range (0.05–1.0) in both microheterogeneous media and neat solvent, and provide information on the microenvironment of FLU, i.e., on its localization within organized media. In ionic and nonionic micellar media, as well as in four‐component microemulsions, FLU is, to various extents, exposed to solvation by the polar and protic components of the microheterogeneous systems (water and/or butan‐1‐ol) in the micellar interfacial region (ΦΔ=0.05–0.30). In contrast, in AOT reverse micelles (consisting of AOT as surfactant, cyclohexane as hydrophobic component, and water), FLU is located in the hydrophobic continuous pseudophase, and is totally separated from the micellar water pools (ΦΔ≈1.0).  相似文献   

11.
We prepared a N^N Pt(II) bisacetylide complex that has strong absorption of visible light (molar absorption coefficients ϵ=6.7×104 M−1 cm−1 at 570 nm), and the singlet oxygen quantum yield (ΦΔ) is up to 78 %. Femtosecond transient absorption spectra show the intersystem crossing (ISC) of the complex takes 81.8 ps, nanosecond transient absorption spectra show the triplet excited state lifetime is 7.6 μs. Density functional theory (DFT) computation demonstrated that the S1 and T1 states are mainly localized on the perylenemonoimide (PMI) ligands, although the involvement of the Pt(II) centre is noticeable. The complex was used as triplet photosensitizer to generate delayed fluorescence with perylenebisimide (PBI) as the triplet state energy acceptor and emitter, via the intermolecular triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA), the delayed fluorescence lifetime is up to 52.5 μs under the experimental conditions.  相似文献   

12.
13.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   

14.
The decay processes of the lowest excited singlet and triplet states of five methylated angelicins (4,6,4′-trimethyl-angelicin, MA, and four methylated thioangelicins, MTA; see Scheme 1) were investigated in live solvents by stationary and pulsed fluorometric and flash photolytic techniques. In particular, the solvent effects on absorption, fluorescence, quantum yields of fluorescence (φF) and triplet formation (φT), lifetimes of fluorescence (τF) and the triplet state (τT) and the quantum yields of singlet oxygen production (φΔ) were investigated. Semiempirical (ZINDO/S-CI) calculations were carried out to obtain information (transition probabilities and nature) on the lowest excited singlet and triplet states. The quantum mechanical calculations and the solvent effect on the photophysical properties showed that the lowest excited singlet state (S1) is a partially allowed π,π* state, while the close-lying S2 state is n,π* in nature. The efficiencies of fluorescence, S1→T1 intersystem crossing (ISC) and S1→ S0 internal conversion (IC) strongly depend on the energy gap between S1, and S2 and are explained in terms of the so-called proximity effect. In fact, for MA in cyclohexane, only the S1→ S0 internal conversion is operative, while in acetonitrile and ethanol, where the n.π* state is shifted to higher energy, the efficiencies of fluorescence and ISC increase significantly. The energy gap between S1 and S2 increases in MTA, where the furanic oxygen is replaced by a sulfur atom. Consequently, the solvent effect on the photophysical parameters of MTA is less marked than for MA; e.g. fluorescence and triplet-triplet absorption are also detectable in the nonpolar cyclohexane. The lowest excited singlet state of molecular oxygen O2(1Dg) was produced efficiently in polar solvents by energy transfer from the T1 state of MA and MTA.  相似文献   

15.
Multiconfiguration wave functions constructed from contracted Gaussian-lobe functions have been found for the ground and valence-excited states of urea. ICSCF molecular orbitals of the excited states were used as the parent configurations for the CI calculations except for the 1A1(π → π*) state. The 1A1(π → π*) state used as its parent configuration an orthogonal linear combination of natural orbitals obtained from the second root of a three-configuration SCF calculation. The lowest excited states are predicted to be the n π → π* and π → π* triplet states. The lowest singlet state is predicted to be the n π → π* state with an energy in good agreement with the one known UV band at 7.2 eV. The π → π* singlet state is predicted to be about 1.9 eV higher, contrary to several previous assignments which assumed the lowest band was a π → π* amide resonance band. The predicted ionization energy of 9.0 eV makes this and higher states autoionizing.  相似文献   

16.
Abstract— An account of a systematic study of the acid-base equilibria of phenazine in the two lowest excited (π,π) states is presented. Pure electronic levels of the free base and of both its protonated forms have been located by spectroscopic methods. Fluorescence, phosphorescence and corresponding absorption spectra have been measured. The O-O energies of the free base, of the singly-protonated species and of the doubly protonated form in the lowest triplet state (3Lα(π, π)) are: 15, 475 cm-1, 14, 175 cm-1 and about 9300cm-1, respectively. This last value has been estimated from the experimentally determined S-T splitting in the other two forms. Corresponding energies of the lowest singlet state (ILα(π,π)) are: 23,500 cm-1, 21,250cm-1 and 17,300 cm-1. The fluorescence of the free base has been found in polar as well as in non-polar solvents and has been checked by the fluorescence excitation spectrum. Fluorescence quantum yields for the free base have been measured: 8.6 times 10-4 and 3.0 × 10-5 in ethanol and hexane solutions, respectively. Emission in ethanol has been ascribed to (π,π), that in hexane —to (π, π). fluorescence. The changes of pKα's under excitation, calculated from the Forster's cycle, are equal: δpKa1=+2.8±0.3; δpKa11?+10±1.5 in the lowest (π, π) triplet state and δpKa1=+4.8±0.5; δpKa11=+8.4 ± 0.5 in the lowest (π,π) singlet state. The δpKa11 in the triplet state is at least as high as that in the 1La(π, π) state. P P P calculations of the electronic levels and of the molecular diagrams have been performed. The energies obtained exceed experimental values by not more than 0.5 eV. An increase of the net charge on nitrogen δp under excitation has been found to be +50, +70 and +19 per cent in the 1La, 1Lb and 3La states, respectively. A good correlation has been found between δpKa1 and δp in both excited states, which have been studied experimentally.  相似文献   

17.
A series of IrIII complexes, based on 1,10‐phenanthroline featuring aryl acetylene chromophores, were prepared and investigated as triplet photosensitizers. The complexes were synthesized by Sonogashira cross‐coupling reactions using a “chemistry‐on‐the‐complex” method. The absorption properties and luminescence lifetimes were successfully tuned by controlling the number and type of light‐harvesting group. Intense UV/Vis absorption was observed for the IrIII complexes with two light‐harvesting groups at the 3‐ and 8‐positions of the phenanthroline. The asymmetric IrIII complex (with a triphenylamine (TPA) and a pyrene moiety attached) exhibited the longest lifetime. Red emission was observed for all the complexes in deaerated solutions at room temperature. Their emission at low temperature (77 K) and nanosecond time‐resolved transient difference absorption spectra revealed the origin of their triplet excited states. The singlet‐oxygen (1O2) sensitization and triplet‐triplet annihilation (TTA)‐based upconversion were explored. Highly efficient TTA upconversion (ΦUC=28.1 %) and 1O2 sensitization (ΦΔ=97.0 %) were achieved for the asymmetric IrIII complex, which showed intense absorption in the visible region (λabs=482 nm, ?=50900 m ?1 cm?1) and had a long‐lived triplet excited state (53.3 μs at RT).  相似文献   

18.
Anthracene-naphthalimide (An-NI) compact electron donor-acceptor dyads were prepared, in which the orientation and distance between the two subunits were varied by direct connection or with intervening phenyl linker. Efficient intersystem crossing (ISC) and long triplet state lifetime (ΦΔ=92 %, τT=438 μs) were observed for the directly connected dyads showing a perpendicular geometry (81°). This efficient spin-orbit charge transfer ISC (SOCT-ISC) takes 376 fs, inhibits the direct charge recombination (CR) to ground state (1CT→S0, takes 3.04 ns). Interestingly, efficient SOCT-ISC for dyads with intervening phenyl linker (ΦΔ=40 % in DCM) was also observed, although the electron donor and acceptor adopt almost coplanar geometry (dihedral angle: 15°). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy shows that the electron spin polarization of the triplet state, i. e. the electron spin selectivity of ISC, is highly dependent on the dihedral angle and the linker. For the dyads showing weaker coupling between the donor and acceptors, the charge separation and the intramolecular triplet energy transfer are inhibited at 80 K (frozen solution), because both the 3An and 3NI states were observed and the ESP are same as compared to the native anthracene and naphthalimide, which unravel their origin. The dyads were used as triplet photosensitizers for triplet−triplet annihilation upconversion (TTA UC). High UC quantum yield (ΦUC=12.9 %) as well as a large anti-Stokes shift (0.72 eV) was attained by excitation into the CT absorption band.  相似文献   

19.
Abstract— Absorption and emission spectra are reported for polar and non-polar solutions of chlorophyll a and chlorophyll b. These spectra can be interpreted in terms of the formation of chlorophyll dimers and more highly aggregated forms. The phosphorescence spectra of polar and non-polar solutions of chlorophyll a are identical and are associated with emission from a π-π-* triplet state.  相似文献   

20.
《Chemical physics letters》1986,132(2):141-143
Δ2,2' -bi-(2H-1,4-benzothiazine) shows striking photochromism and thermochromism. The color change is thermally and photochemically reversible. The photochromism can be ascribed to the cis-trans isomerization about the central double bond, the yellow trans isomer being more stable. The quantum yield of formation øCP of the cis-benzothiazine from trans in dioxan was found to be 0.035 at 355 nm excitation. Laser flash photolysis of the trans-benzothiazine revealed that the excited singlet state of π, π* character is the originating state for the photochromism since there is no experimental evidence of a triplet intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号