首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A carbon paper electrode was modified with the conducting copolymer of 3-methylthiopene and thiophene-3-acetic acid prepared electrochemically on the electrode, and an enzyme electrode was fabricated by covalent immobilization of glucose oxidase on the modified electrode. The modification with the conducting copolymer increased the surface area of the electrode and the amount of the immobilized enzyme. As a result, the enzyme electrode showed a high catalytic activity. Moreover, it was found that the increased surface area led to a high rate of electron transfer reaction between the electrode and p-benzoquinone employed as an electron mediator. The enzyme electrode fabricated with the modified carbon paper gave a larger glucose oxidation current than that fabricated with the bare one. In addition, the glucose oxidation current was found to increase with increasing content of the conducting copolymer in the modified carbon paper. Corresponding to the large glucose oxidation current, high performance was confirmed for the glucose fuel cell constructed with the enzyme electrode based on the modified carbon paper.  相似文献   

2.
3.
A novel enzyme reactor was prepared using calcium alginate fiber (CAF) and amine-modified nanosized mesoporous silica (AMNMS) as a support. Combination of the adsorption of the enzyme on AMNMS with the cage effect of the polymer greatly increases the catalytic activity and the stability of the immobilized enzyme. It was shown that the lifetime, stability, and catalytic activity of the enzyme reactor were greatly improved by incorporating AMNMS into CAF to efficiently encapsulate the enzyme. Glucose oxidase was chosen as a model enzyme to explore the possibility of using CAF–AMNMS as a matrix for enzyme immobilization in the design of a chemiluminescence (CL) flow-through biosensor. The sensitivity of the flow-through biosensor combined with a novel luminol-diperiodatonickelate CL system was higher than for other reported CL biosensors. The proposed biosensor exhibits short response time, easy operation, long lifetime, high catalytic activity, high sensitivity, and simple assembly.  相似文献   

4.
将脂质体囊泡与仿生硅化技术相结合,模拟细胞纳微环境,实现以脂质体为模板仿生制备氧化硅固定葡萄糖氧化酶(GOx),建立性能稳定的固定化酶.扫描电镜分析显示,固定化GOx为球形纳米粒子,粒径分布在200nm左右,在优化反应条件下GOx回收率达到71.8%.由于载体的空间限制作用及其提供的较稳定微环境,固定化GOx表现出良好的热稳定性和pH稳定性,其对变性剂耐受性和操作稳定性等也得到明显提高.  相似文献   

5.
A self-assembled functionalized metal-organic framework, Zn4O(NH2BDC)3 microcrystalline (IRMOF3) could be prepared by washing complex with DMF and CH2Cl2. Via modification with sodium alginate (AA), IRMOF3-AA samples could be obtained. IR and TEM were used for structural confirmation of IRMOF3-AA samples. PEG-GOD could be obtained via PEGylation of glucose oxidase (GOD), which could be confirmed by X-ray photoelectron spectroscopy (XPS) and used for further application. IRMOF3-AA@PEG-GOD samples could be obtained by the immobilization of PEG-GOD to IRMOF3-AA, and the best immobilization condition was achieved by adjusting the amount of GOD. From the view point of enzyme mimics, combined with peroxidase-like properties of the IRMOFS-AA samples, the determination of glucose was demonstrated with a linear range from 5?×?10?5 mol/L to 1.6?×?10?3 mol L?1 using tetramethylbenzidine (TMB) as chromogenic substrate. The prepared IRMOF3-AA@PEG-GOD samples exhibited dual functional enzyme-like (peroxidase and GOD-like) activities, with simple experimental steps.

  相似文献   


6.
The structure and properties of the blend of regenerated silk fibroin (RSF) and poly(vinyl alcohol) (PVA) were investigated. The two polymers in the blend are in the state of phase segregation. Infrared (IR) spectra indicate that the RSF in the blend maintains its intrinsic properties, thus, ethanol treatment can transfer silk I structure of RSF to silk II structure. The water absorption property and mechanical property of the blend are improved in comparison with those of RSF. The blend maintains the major merit of RSF, that is, it can immobilize glucose oxidase on the basis of the conformational transition from silk I structure to silk II structure. The properties of the immobilized enzyme are examined. Moreover, the second generation of glucose sensor based on the immobilized enzyme is fabricated and it has a variety of advantages including easy maintenance of enzyme, simplicity of construction, fast response time and high stability.  相似文献   

7.
Colloid Au (Au(nano)) with a diameter of about 10 nm was prepared and used in combination with dihexadecylphosphate (DHP) to immobilize glucose oxidase (GOD) onto the surface of a graphite electrode (GE). The direct electrochemistry of GOD confined in the composite film was investigated. The immobilized GOD displayed a pair of redox peaks with a formal potential of -0.475 mV in pH 7.0 O(2)-free phosphate buffers at scan rate of 150 mV s(-1). The GOD in the composite film retained its bioactivity and could catalyze the reduction of dissolved oxygen. Upon the addition of glucose, the reduction peak current of dissolved oxygen decreased, which could be developed for glucose determination. A calibration linear range of glucose was 0.5-9.3 mM with a detection limit of 0.1 mM and a sensitivity of 1.14 microA mM(-1). The glucose biosensor showed good reproducibility and stability. The general interferences that coexisted in human serum sample such as ascorbic acid and uric acid did not affect glucose determination.  相似文献   

8.
Thermolysis of hexachlorocyclohexane in a flow-through packed system in an inert gas atmosphere was studied.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 9, 2004, pp. 1528–1532.Original Russian Text Copyright © 2004 by Kutin, Gubanova, Zorin, Zanozina, Markova, Suprunova, Bykova.  相似文献   

9.
This article aims at the evaluation of the catalytic performance of glucose oxidase (GO) (EC.1.1.3.4) for the glucose/gluconic acid conversion in the ultrafiltration cell type membrane reactor (MB-CSTR). The reactor was coupled with a Millipore ultrafiltration-membrane (cutoff of 100 kDa) and operated for 24 h under agitation of 100 rpm, pH 5.5, and 30 degrees C. The experimental conditions varied were the glucose concentration (2.5, 5.0, 10.0, 20.0, and 40.0 mM), the feeding rate (0.5, 1.0, 3.0, and 6.0/h), dissolved oxygen (8.0 and 16.0 mg/L), GO concentration (2.5, 5.0, 10.0, and 20.0 U(GO)/mL), and the glucose oxidase/catalase activity ratio (U(GO)/U(CAT))(1:0, 1:10, 1:20, and 1:30). A conversion yield of 80% and specific reaction rate of 40 x 10(-4) mmol/h x U(GO) were attained when the process was carried out under the following conditions: D =3.0/h, dissolved oxygen =16.0 mg/L, [G] =40 mM, and (U(GO)/U(CAT)) =1:20. A simplified model for explaining the inhibition of GO activity by hydrogen peroxide, formed during the glucose/gluconic acid conversion, was presented.  相似文献   

10.
Bilayer glucose isomerase was immobilized in porousp-trimethylamine-polystyrene (TMPS) beads, through a molecular deposition technique. Some of the factors that influence the activity of immobilized glucose isomerase were optimized, with the enzyme concentration of 308 IU/mL, enzyme:matrix ratio of 924 IU/g wet carrier, and hexamethylenebis(trimethylammonium iodine) concentration of 15 mg/mL, giving the maximum catalytic activity (2238 IU/g dry gel) of the immobilized bilayer glucose isomerase, retaining 68.5% of the initially added activity. The half-life of the immobilized bilayer glucose isomerase was approx 45 d at pH 8.5, 60°C, with 50% (w/v) glucose as substrate. The specific productivity of the immobilized bilayer glucose isomerase was 223 g dry D-glucose/g dry immobilized enzyme per day.  相似文献   

11.
Bilayer glucose isomerase was immobilized in porousp-trimethylaminepolystyrene (TMPS) beads through a molecular deposition technique. Some of the factors that influence the activity of immobilized glucose isomerase were optimized, with the enzyme concentration of 308 IU/mL, enzyme-to-matrix ratio of 924 IU/g wet carrier, and hexamethylene bis(trimethylammonium iodine) concentration of 15 mg/mL giving the maximum catalytic activity (2238 IU/g dry gel) of the immobilized bilayer glucose isomerase, retaining 68.5% of the initially added activity. The half-life of the immobilized bilayer glucose isomerase was approx 45 d at pH 8.5, 60°C, with 50% (w/v) glucose as substrate. The specific productivity of the immobilized bilayer glucose isomerase was 223 g dry D-glucose/g dry immobilized enzyme per d.  相似文献   

12.
An amperometric biosensor for dopamine is described. It is based on the enzyme monoamine oxidase immobilized on a glutaraldehyde-activated eggshell membrane that was deposited on a glassy carbon electrode. The Michaelis-Menten constant (Km) is 0.087 mM. Optimum pH and temperature conditions were obtained at pH 7.0 and 37 °C, respectively. The sensor showed a detection limit of 20 μM, a linear range from 50 μM to 250 μM, and a storage stability of ~25 days. In order to further improve the performance, a Nafion coating was applied on the electrode surface which gave favorable results with respect to shelf life of the enzyme (~40 days), the limit of detection, and the selectivity over ascorbic acid and uric acid.  相似文献   

13.
In this paper, we report on growth of ZnO nanorods on the surface of gold interdigital electrodes and its implementation as a conductive n-type channel for the fabrication of a liquid-gated field effect transistor. Glucose oxidase was immobilized on the surface of the ZnO nanorods and the fabricated device was used as a four-electrode glucose biosensor. The resistance of the conductive channel was affected by addition of glucose. The applied bias voltage to the gate in the fabricated device affects the channel resistance in the same manner as the increase of enzymatic products during the glucose oxidation. Large effective area, good conductivity, and biocompatibility properties of ZnO nanorods are the key features in this highly sensitive and stable biosensor. Our measurements showed that the threshold voltage of transistor was about 0.75 V. The current increased in the presence of the glucose and exhibited a dynamic linear range with the logarithm of glucose concentration in the range between 0.01 and 5 mM. The detection limit was about 3.8 μM.  相似文献   

14.
2-Amino-4-chloro-s-triazine, a derivative of DEAE-cellulose, and acrolein/styrene copolymer were used as supports for the immobilization of glucose oxidase and catalase after being modified with diaminohexane followed by glutaraldehyde. Immobilization was carried out with optimum glucose oxidase-catalase ratios. The activity variations of the immobilized dual-enzyme systems were investigated in relation to pH and temperature. Time-dependent gluconic acid production resulting from the oxidation of glucose was monitored in a recycling fluid-bed reactor. The deactivation rates of glucose oxidase and catalase were investigated according to the first-order reaction kinetics depending on the presence of the intermediate product H2O2.  相似文献   

15.
Zhou G  Fung KK  Wong LW  Chen Y  Renneberg R  Yang S 《Talanta》2011,84(3):659-665
The use of rod-like and vesicle-like mesoporous SiO2 particles for fabricating high performance glucose biosensors is reported. The distinctively high surface areas of mesoporous structures of SiO2 rendered the adsorption of glucose oxidase (GOx) feasible. Both morphologies of SiO2 enhanced the sensitivities of glucose biosensors, but by a factor of 36 for vesicle-like SiO2 and 18 for rod-like SiO2, respectively. The greater enhancement of vesicle-like SiO2 can be accounted for by its higher specific surface area (509 m2 g−1) and larger total pore volume (1.49 cm3 g−1). Interestingly, the current responses of GOx immobilized in interior channels of the mesoporous SiO2 were enhanced much more than those of simple mixtures of GOx and the mesoporous SiO2. This suggests that the enhancement of current responses arise not only from the high surface area of SiO2 for high enzyme loading, but also from the improved enzyme activity upon its adsorption on mesoporous SiO2. Also compared were the performances of glucose biosensors with GOx immobilized on mesoporous SiO2 by physical adsorption and by covalent binding to 3-aminopropyltrimethoxysilane (APTMS) modified SiO2 using glutaraldehyde as the cross-linker. The covalent binding approach resulted in higher enzyme loading but lower current sensitivity than with the physical adsorption.  相似文献   

16.
《Supramolecular Science》1997,4(3-4):279-291
Glucose oxidase was immobilized on a Langmuir-Blodgett film of cellulose acetate propionate deposited on a self-assembled monolayer coated substrate. These layers were characterized in terms of their ellipsometric thickness, wettability and infra-red spectra. Glucose oxidase was immobilized on this composite layer by physisorption. The presence of the enzyme on the surface was confirmed by ellipsometry, infra-red spectroscopy and by detecting its activity electrochemically. An enzyme population remained active after adsorption onto this assembly.  相似文献   

17.
Sulfonated graphene nanosheet/gold nanoparticle (SGN/Au) hybrid was synthesized by electrostatic self-assembly of anionic SGN and positively charged gold nanoparticles. Due to the well-dispersivity of SGN in aqueous solution and its adequate negative charge, Au nanoparticles were assembled uniformly on graphene surface with high distribution. With the advantages of both graphene and Au nanoparticles, SGN/Au hybrid showed enhanced electrocatalytic activity towards O2 reduction. Furthermore, it provided a conductive and favorable microenvironment for the glucose oxidase (GOD) immobilization and thus promoted its direct electron transfer at the glassy carbon electrode. Based on the consumption of O2 caused by glucose at the interface of GOD electrode modified with SGN/Au hybrid, the modified electrode displayed satisfactory analytical performance, including high sensitivity (14.55 μA mM?1 cm?2), low detection limit (0.2 mM), an acceptable linear range from 2 to 16 mM, and also the prevention from the interference of some species. These results indicated that the prepared SGN/Au hybrid is a promising candidate material for high-performance glucose biosensor.  相似文献   

18.
将葡萄糖氧化酶固定于羟基磷灰石(HAp)-Nation复合膜,构建了高灵敏、高选择性的葡萄糖传感器.羟基磷灰石和Nation良好的协同作用,可以有效地提高传感器的稳定性与灵敏度.实验结果表明:固定在复合膜修饰电极上的葡萄糖氧化酶呈现出一对较好的近乎可逆的氧化还原峰,并且对葡萄糖的氧化有良好的催化作用,同时消耗溶解氧,从而导致溶解氧还原峰的降低.在-0.8V处,随葡萄糖浓度的增加,葡萄糖氧化酶催化葡萄糖氧化时消耗溶解氧的量增加,溶解氧还原电流逐渐降低,因此该修饰电极可以作为葡萄糖传感器实现对葡萄糖的高灵敏检测.在0.12~2.16mmol·L^-1浓度范围内,溶解氧还原电流的降低与葡萄糖的浓度成正比,据此可以测定出溶液中葡萄糖的浓度,该传感器的检出限和灵敏度分别为0.02mmol·L^-1(SIN=3)和6.75mA·mol·L^-1.因此,HAp-Nation复合膜为酶的固定和直接电化学研究提供了一个新的有效平台,在构建新型无试剂葡萄糖传感器方面具有较大的应用前景.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号