首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional gas chromatograph is described for the analysis of volatile compounds. The chromatographic system consists of two separate chromatographs linked together with an interface containing an intermediate trap. The trap is cooled with nitrogen (?150°C) and a cryogradient is created inside the trap enclosure. The sample is reinjected during controlled (chromatographic) conditions, using thermostated air. The sample components are eluted from the trap as narrow symmetrical peaks; the shape and width of the peaks eluted do not noticeably affect the subsequent chromatography. The enrichment of n-butane in the trap is quantitative in the range 10?10 – 10?5 g.  相似文献   

2.
An automated system employing a purge and trap technique with capillary gas chromatography and electron-capture detection (ECD) has been developed for the analysis of trace levels of volatile halogenated hydrocarbons and applied to the determination of the compounds in environmental samples such as rainwater and ambient air. The operation of the method, its application to environmental samples, and the results obtained are described. Use of the system ensured good chromatographic resolution and high accuracy, even with trace levels of the compounds.  相似文献   

3.
Few studies were conducted on oxygenated volatile organic compounds (OVOC) because of problems encountered during the sampling/analyzing steps induced by water in sampled air. Consequently, there is a lack of knowledge of their spatial and temporal trends and their origins in ambient air. In this study, an analyzer consisted of a thermal desorber (TD) interfaced with a gas chromatograph (GC) and a flame ionization detector (FID) was developed for online measurements of 18 OVOC in ambient air including 4 alcohols, 6 aldehydes, 3 ketones, 3 ethers, 2 esters and 4 nitriles. The main difficulty was to overcome the humidity effect without loss of compounds. Water amount in the sampled air was reduced by the trap composition (two hydrophobic graphitized carbons—Carbopack B:Carbopack X), the trap temperature (held at 12.5 °C), by diluting (50:50) the sample with dry air before the preconcentration step and a trap purge with helium. Humidity management allowed the use of a polar CP-Lowox column in order to separate the polar compounds from the hydrocarbon/aromatic matrix. The safe sampling volume for the dual-sorbent trap 75 mg Carbopack X:5 mg Carbopack B was found to 405 mL for ethanol by analyzing a standard mixture at a relative humidity of 80%. Detection limits ranging from 10 ppt for ETBE to 90 ppt for ethanol were obtained for 18 compounds for a sampling volume of 405 mL. Good repeatabilities were obtained at two levels of concentration (relative standard deviation <5%). The calibration (ranging from 0.5 to 10 ppb) was set up at three different levels of relative humidity to test the humidity effect on the response coefficients. Results showed that the response coefficients of all compounds were less affected by humidity except for those of ethanol and acetonitrile (decrease respectively of 30% and 20%). The target compounds analysis shows good reproducibility with response coefficient variability of less then 10% of the mean initial value of calibration for all the compounds. Hourly ambient air measurements were conducted in an urban site in order to test this method. On the basis of these measurements, ethanol, acetone and acetaldehyde have shown the highest concentration levels with an average of 2.10, 1.75 and 1.37 ppb respectively. The daily evolution of some OVOC, namely ethanol and acetaldehyde, was attributed to emissions from motor vehicles while acetone has a different temporal evolution that can be probably associated with remote sources.  相似文献   

4.
An analytical method was developed for the simultaneous measurement of 18 pyrethroids (allethrin, bifenthrin, cyfluthrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, fenpropathrin, furamethrin, imiprothrin, metofluthrin, permethrin, phenothrin, prallethrin, profluthrin, resmethrin, tetramethrin and transfluthrin) in indoor air. The pyrethroids were collected for 24 h using a combination of adsorbents (quartz fiber filter disk and Empore C18 disk), with protection from light, and then extracted with acetone, concentrated, and analyzed by GC/MS. They could be determined accurately and precisely (detection limits: ca. 1 ng/m3). The collected pyrethroid samples could be stored for up to one month at 4 °C in a refrigerator.  相似文献   

5.
6.
Practical aspects of the application of solid-phase microextraction (SPME) to the determination of volatile aliphatic amines in air are described. Analytes included methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA). New SPME stationary phases were examined. The effects of relative humidity and temperature on analytes uptake were taken into account in analysis. Gas chromatography (GC) with flame ionization detector (FID) was used for the final analysis.  相似文献   

7.
An instrument has been developed and tested for the continuous measurement of volatile organic compounds (VOC) in air. The system consists of a gas chromatograph equipped with a dedicated sampling device that allows the sample to be transferred to a cooled microtrap via sampling loops (10, 100, 250 ml) or via a direct pump transfer to the trap. The microtrap is placed in the chromatographic oven just below a modified split-splitless injector, allowing direct liquid injection for calibration of the system; the injector is in communication with the sampling valve equipped with the loop and the sampling pump. The system allows 24-hour sampling and analysis of a large number of VOC (up to 25 individual hydrocarbons ranging from C2 C9) and also polar volatile organic compounds PVOC. Thanks to the particular trap geometry, a minimum consumption of liquid nitrogen (between 150 300 ml) is needed for each analytical run and no water managing system is normally required for humid air samples.  相似文献   

8.
Summary A simple and accurate headspace-GC method is described to determine the amount of ethylene oxide which has been collected from air using adsorption tubes containing activated charcoal and a relatively safe desorbing agent (N,N-dimethyl acetamide). The detection limit is 40μg/m3.  相似文献   

9.
The synergy of combining fast temperature programming capability and adsorption chromatography using fused silica based porous layer open tubular columns to achieve high throughput chromatography for the separation of volatile compounds is presented. A gas chromatograph with built‐in fast temperature programming capability and having a fast cool down rate was used as a platform. When these performance features were combined with the high degree of selectivity and strong retention characteristic of porous layer open tubular column technology, volatile compounds such as light hydrocarbons of up to C7, primary alcohols, and mercaptans can be well separated and analyzed in a matter of minutes. This analytical approach substantially improves sample throughput by at least a factor of ten times when compared to published methodologies. In addition, the use of porous layer open tubular columns advantageously eliminates the need for costly and time‐consuming cryogenic gas chromatography required for the separation of highly volatile compounds by partition chromatography with wall coated open tubular column technology. Relative standard deviations of retention time for model compounds such as alkanes from methane to hexane were found to be less than 0.3% (n = 10) and less than 0.5% for area counts for the compounds tested at two levels of concentration by manual injection, namely, 10 and 1000 ppm v/v (n = 10). Difficult separations were accomplished in one single analysis in less than 2 min such as the characterization of 17 components in cracked gas containing alkanes, alkenes, dienes, branched hydrocarbons, and cyclic hydrocarbons.  相似文献   

10.
This article reviews recent literature on the analysis of industrial contaminants in indoor air in the framework of the REACH project, which is mainly intended to improve protection of human health and the environment from the risks of more than 34 millions of chemical substances. Industrial pollutants that can be found in indoor air may be of very different types and origin, belonging to the volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) categories. Several compounds have been classified into the priority organic pollutants (POPs) class such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/PCDFs) and related polychlorinated compounds, and polycyclic aromatic hydrocarbons (PAHs). Many of these compounds are partially associated to the air gas phase, but also to the suspended particulate matter. Furthermore, settled dust can act as a concentrator for the less volatile pollutants and has become a matrix of great concern for indoors contamination. Main literature considered in this review are papers from the last 10 years reporting analytical developments and applications regarding VOCs, aldehydes and other carbonyls, PCBs, PCDDs, PCDFs, and PAHs in the indoor environment. Sample collection and pretreatment, analyte extraction, clean-up procedures, determination techniques, performance results, as well as compound concentrations in indoor samples, are summarized and discussed. Emergent contaminants and pesticides related to the industrial development that can be found in indoor air are reviewed in a second part in this volume.  相似文献   

11.
An automated monitoring system for various C1 to C5 gas-phase organic carbonyls in ambient air is described. The system consists of a parallel plate diffusion scrubber (PPDS), which is coupled with a high-performance liquid chromatography–ultraviolet (HPLC–UV) system using an automated injection valve. Compared with an annular diffusion scrubber (DS) employed so far for gas-phase carbonyl monitoring, PPDS shows an improved collection efficiency for formaldehyde, acetaldehyde, propionaldehyde, and acetone with >97% at an airflow rate of 0.5?L/min. High gas–liquid concentration ratios of PPDS and an optimised HPLC–UV system allow limits of detection (LOD) in a range of 80–500?pptv. A low liquid hold-up volume of the PPDS results in a short response time of about 10?min. Additionally, the optimised analysis time for 13 carbonyl compounds containing calibration standard enables brief measurement intervals of 25?min. The developed PPDS–HPLC system shows its reliability from urban site monitoring in Seoul, South Korea.  相似文献   

12.
An experimental method for the analysis of volatile organic compounds in polymers is described. The technique involves dynamic headspace sampling, collection, and concentration of the volatiles in a cold trap, followed by capillary column gas chromatography/mass spectometry. Flow switching is carried out by the Deans switching technique. Four technical polymers used as pharmaceutical packaging materials have been analyzed in order to demonstrate the method.  相似文献   

13.
14.
冯丽丽  胡晓芳  于晓娟  张文英 《色谱》2016,34(2):209-214
采用热脱附(TD)结合气相色谱-三重四极杆串联质谱(GC-MS/MS)建立了环境空气中23种挥发性有机物(VOCs)同时检测的分析方法。空气样品通过主动采样的方式富集到装有Tenax-TA填料的热脱附管中,热解吸后在选择反应监测(SRM)模式下用GC-MS/MS进行检测,内标法定量。结果表明,23种VOCs在0.01~1 ng和1~100 ng低、高两个范围内线性关系良好,相关系数(r2)均大于0.99,方法定量限为0.00008~1 μ g/m3。加标水平为2、10和50 ng时,23种VOCs的平均回收率为77%~124%。除了最低加标水平的氯苯,相对标准偏差(RSD, n=6)均小于20%。对市内3个采样点的环境空气进行测定,其中苯、甲苯、乙苯、二甲苯、苯乙烯、1,2,4-三甲基苯和六氯丁二烯均有检出。实验证明,该TD和GC-MS/MS相结合的检测方法具有准确、可靠、灵敏度高等优点,适用于环境空气中VOCs的同时测定。  相似文献   

15.
吕怡兵  孙晓慧  付强 《色谱》2010,28(5):470-475
便携式气相色谱-质谱仪(便携式GC-MS)能同时对多组分复杂有机物进行定性定量分析,在环境监测尤其是事故现场应急监测中发挥越来越重要的作用。本文比较了便携式GC-MS与EPATO-14A方法分析测定环境空气中低浓度挥发性有机物(VOCs)的性能,并探讨了利用定量环(loop环)模式测定高浓度VOCs的准确度。结果表明,采用内标标准曲线定量,HAPSITE便携式GC-MS测定空气中VOCs的检出限与EPATO-14A方法相当,准确度和精密度略低,但均符合环境监测分析的要求。利用loop环可对大部分10-6级的高浓度VOCs样品进行较为准确的测定,在突发性环境污染事故中可以得到基本准确的结果。  相似文献   

16.
This article reviews developments in the sampling and analysis of volatile organic compounds (VOCs) in ambient air since the 1970s, particularly in the field of environmental monitoring. Global monitoring of biogenic and anthropogenic VOC emissions is briefly described. Approaches used for environmental monitoring of VOCs and industrial hygiene VOC exposure assessments are compared. The historical development of the sampling and analytical methods used is discussed, and the relative advantages and disadvantages of sorbent and canister methods are identified. Overall, there is considerable variability in the reliability of VOC estimates and inventories. In general, canister methods provide superior precision and accuracy and are particulary useful for the analysis of complex mixtures of VOCs. Details of canister methods are reviewed in a companion paper. C. C. Austin is an Invited Scientist of the National Research Council of Canada.  相似文献   

17.
A multiresidue method for determining 22 polychlorinated biphenyls (PCBs) in air has been developed and validated by gas chromatography (GC) coupled to tandem mass spectrometry (MS/MS) using a triple quadrupole analyzer (QqQ). The method was validated in terms of both steps of sampling and analysis. The sampling method, which is based on active sampling using polyurethane foam (PUF) as adsorbent, was validated by generating standard atmospheres. The retention capacity of this sampling sorbent allows up to 5 m3 of air to be sampled without any breakthrough for most compounds. Two solvent extraction methods were compared: sonication and Soxhlet extraction with a mixture of n-hexane:diethyl ether (95:5 v/v). Both extraction methods yielded similar results, but the first one required less solvent and time. The method exhibited good accuracy (80.3–99.8%), precision (2.2–15.2%) and lower limits that allowed quantification and confirmation at levels as low as 0.008 ng/m3. Finally, the method was applied to the analysis of PCBs in the air in areas near to a municipal solid-waste landfill and directly above the refuse in the landfill, where it indicatedd the presence of some of the target compounds. Figure General chemical structure of polychlorinated biphenyls  相似文献   

18.
Su J  Lu S  Chen J  Chen J  Liang Z  Liu J 《色谱》2011,29(7):643-655
以溶剂转移净化为核心步骤,建立了一种适用于大蒜样品中农药多残留分析的前处理方法(方法I),配以一个辅助方法(方法II),构成大蒜中常见289种农药多残留的分析体系(方法I283种,方法II6种)。方法I中,样品用乙腈-水溶液提取,盐析分配,溶剂转移和固相萃取(SPE)净化后进行气相色谱-质谱(GC-MS)分析;方法II中,样品用无水Na2SO4配合乙酸乙酯均质研磨,超声波辅助提取,提取液经Primary Secondary Amine (PSA)粉末分散固相萃取和LC-Si柱选择洗脱净化后进行GC分析。GC-MS采用选择离子监测(SIM)方式,GC采用火焰光度检测器(FPD)检测,外标法定量。方法简便、快速,通过优化前处理和上机条件,在最优条件下进行测试,方法的定量限(S/N≥10)为0.01~0.05 mg/kg。方法I中,在加标水平为0.02、0.20 mg/kg时,回收率为52%~163%,其中回收率在70%~120%之间的占88%,相对标准偏差为2.4%~18%;方法II中,在加标水平为0.01、0.02、0.10、0.20 mg/kg时,回收率为70%~111%,相对标准偏差为3.2%~9.3%。详细描述了实验模型的构建,并对GC-MS灵敏度的提高提出了新的见解。该方法准确、灵敏、快速,可满足大蒜中多种农药残留的检测要求。  相似文献   

19.
An automated sampling and enrichment apparatus coupled with a gas chromatography/mass spectrometry (GC/MS) technique was constructed for the analysis of ambient volatile organic compounds (VOCs). A sorbent trap was built within the system to perform on-line enrichment and thermal desorption of VOCs onto GC/MS. In order to improve analytical precision, calibration accuracy, and to safe-guard the long-term stability of this system, a mechanism to allow on-line internal standard (I.S.) addition to the air sample stream was configured within the sampling and enrichment apparatus. A sub-ppm (v/v) level standard gas mixture containing 1,4-fluorobenzene, chloropentafluorobenzene, 1-bromo-4-fluorobenzene was prepared from their pure forms. A minute amount of this I.S. gas was volumetrically mixed into the sample stream at the time of on-line enrichment of the air sample to compensate for measurement uncertainties. To assess the performance of this VOC GC/MS system, a gas mixture containing numerous VOCs at sub-ppb (v/v) level served as the ambient air sample. Various internal standard methods based on total ion count (TIC) and selective ion monitoring (SIM) modes were attempted to assess the improvement in analytical precision and accuracy. Precision was improved from 7-8% RSD without I.S. to 2-3% with I.S. for the 14 target VOCs. Uncertainties in the calibration curves were also improved with the adoption of I.S. by reducing the relative standard deviation of the slope (Sm%) by an average a factor of 4, and intercept (Sb%) by a factor of 2 for the 14 target VOCs.  相似文献   

20.
Gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF MS) has been applied to characterize the organic pollution pattern of marine salt samples collected in saltworks from the Spanish Mediterranean coast. After dissolving the samples in water, a solid-phase extraction was applied reaching with a 250-preconcentration factor. The screening methodology allowed the detection of sample components without any kind of pre-selection of target pollutants. The identity of components detected was established by accurate mass measurements and comparison of experimental full-acquisition spectra with theoretical MS libraries. Several organic pollutants were identified in the samples, like plasticizers - potentially toxic to humans - and fragrances -included within the group of pharmaceuticals and personal care products-, among others. Our results indicate that these contaminants can be found in the marine salt after the crystallization process. GC-TOF MS is a powerful technique for wide-scope screening of (semi)volatile, low-polar organic contaminants, able to investigate the presence of a large number of compounds. Searching of contaminants is not restricted to a target list of compounds. Therefore, unexpected contaminants can be discovered in an efficient way, with better sensitivity and selectivity than other conventional analytical techniques, and making use of the powerful qualitative information provided by full-spectrum acquisition at accurate mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号