共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical procedure for solving the time-dependent, incompressible Navier-Stokes equations is presented. The present method is based on a set of finite element equations of the primitive variable formulation, and a direct time integration method which has unique features in its formulation as well as in its evaluation of the contribution of external functions. Particular processes regarding the continuity conditions and the boundary conditions lead to a set of non-linear recurrence equations which represent evolution of the velocities and the pressures under the incompressibility constraint. An iteration process as to the non-linear convective terms is performed until the convergence is achieved in every integration step. Excessively artificial techniques are not introduced into the present solution procedure. Numerical examples with vortex shedding behind a rectangular cylinder are presented to illustrate the features of the proposed method. The calculated results are compared with experimental data and visualized flow fields in literature. 相似文献
2.
Beginning with the Galerkin finite element method and the simplest appropriate isoparametric element for modelling the Navier-Stokes equations, the spatial approximation is modified in two ways in the interest of cost-effectiveness: the mass matrix is ‘lumped’ and all coefficient matrices are generated via 1-point quadrature. After appending an hour-glass correction term to the diffusion matrices, the modified semi-discretized equations are integrated in time using the forward (explicit) Euler method in a special way to compensate for that portion of the time truncation error which is intolerable for advection-dominated flows. The scheme is completed by the introduction of a subcycling strategy that permits less frequent updates of the pressure field with little loss of accuracy. These techniques are described and analysed in some detail, and in Part 2 (Applications), the resulting code is demonstrated on three sample problems: steady flow in a lid-driven cavity at Re ≤ 10,000, flow past a circular cylinder at Re ≤ 400, and the simulation of a heavy gas release over complex topography. 相似文献
3.
A global method of generalized differential quadrature is applied to solve the two-dimensional incompressible Navier-Stokes equations in the vorticity-stream-function formulation. Numerical results for the flow past a circular cylinder were obtained using just a few grid points. A good agreement is found with the experimental data. 相似文献
4.
This paper is concerned with the implementation of Lagrange-Galerkin finite element methods for the Navier-Stokes equations. A scheme is developed to efficiently handle unstructed meshes with local refinement, using a quad-tree-based algorithm for the geometric search. Several difficulties that arise in the construction of the right-hand side are discussed in detail and some useful tricks are proposed. The resulting method is tested on the lid-driven square cavity and the vortex shedding behind a rectangular cylinder and is found to give satisfactory agreement with previous works. A detailed analysis of the effect of time discretization is included. 相似文献
5.
A. Segal 《国际流体数值方法杂志》1985,5(3):269-280
In this paper the integrated solution approach, the penalty function approach and the solenoidal approach for the finite element solution of the stationary Navier-Stokes equations are compared. It is shown that both the penalty function approach and the solenoidal approach compare favourably to the integrated solution method. For fine meshes the solenoidal approach appears to be the cheapest method. 相似文献
6.
This paper presents results of an ongoing research program directed towards developing fast and efficient finite element solution algorithms for the simulation of large-scale flow problems. Two main steps were taken towards achieving this goal. The first step was to employ segregated solution schemes as opposed to the fully coupled solution approach traditionally used in many finite element solution algorithms. The second step was to replace the direct Gaussian elimination linear equation solvers used in the first step with iterative solvers of the conjugate gradient and conjugate residual type. The three segregated solution algorithms developed in step one are first presented and their integrity and relative performance demonstrated by way of a few examples. Next, the four types of iterative solvers (i.e. two options for solving the symmetric pressure type equations and two options for solving the non-symmetric advection–diffusion type equations resulting from the segregated algorithms) together with the two preconditioning strategies employed in our study are presented. Finally, using examples of practical relevance the paper documents the large gains which result in computational efficiency, over fully coupled solution algorithms, as each of the above two main steps are introduced. It is shown that these gains become increasingly more dramatic as the complexity and size of the problem is increased. 相似文献
7.
We present a simple and efficient finite element method to solve the Navier-Stokes equations in primitive variables V, p. It uses (a) an explicit advection step, by upwind differencing. Improvement with regard to the classical upwind differencing scheme of the first order is realized by accurate calculation of the characteristic curve across several elements, and higher order interpolation; (b) an implicit diffusion step, avoiding any theoretical limitation on the time increment, and (c) determination of the pressure field by solving the Poisson equation. Two laminar flow calculations are presented and compared to available numerical and experimental results. 相似文献
8.
The streamfunction-vorticity equations for incompressible two-dimensional flows are uncoupled and solved in sequence by the finite element method. The vorticity at no-slip boundaries is evaluated in the framework of the streamfunction equation. The resulting scheme achieves convergence, even for very high values of the Reynolds number, without the traditional need for upwinding. The stability and accuracy of the approach are demonstrated by the solution of two well-known benchmark problems: flow in a lid-driven cavity at Re ? 10,000 and flow over a backward-facing step at Re = 800. 相似文献
9.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions. 相似文献
10.
The pressure is a somewhat mysterious quantity in incompressible flows. It is not a thermodynamic variable as there is no ‘equation of state’ for an incompressible fluid. It is in one sense a mathematical artefact—a Lagrange multiplier that constrains the velocity field to remain divergence-free; i.e., incompressible—yet its gradient is a relevant physical quantity: a force per unit volume. It propagates at infinite speed in order to keep the flow always and everywhere incompressible; i.e., it is always in equilibrium with a time-varying divergence-free velocity field. It is also often difficult and/or expensive to compute. While the pressure is perfectly well-defined (at least up to an arbitrary additive constant) by the governing equations describing the conservation of mass and momentum, it is (ironically) less so when more directly expressed in terms of a Poisson equation that is both derivable from the original conservation equations and used (or misused) to replace the mass conservation equation. This is because in this latter form it is also necessary to address directly the subject of pressure boundary conditions, whose proper specification is crucial (in many ways) and forms the basis of this work. Herein we show that the same principles of mass and momentum conservation, combined with a continuity argument, lead to the correct boundary conditions for the pressure Poisson equation: viz., a Neumann condition that is derived simply by applying the normal component of the momentum equation at the boundary. It usually follows, but is not so crucial, that the tangential momentum equation is also satisfied at the boundary. 相似文献
11.
In this paper we address the problem of the implementation of boundary conditions for the derived pressure Poisson equation of incompressible flow. It is shown that the direct Galerkin finite element formulation of the pressure Poisson equation automatically satisfies the inhomogeneous Neumann boundary conditions, thus avoiding the difficulty in specifying boundary conditions for pressure. This ensures that only physically meaningful pressure boundary conditions consistent with the Navier-Stokes equations are imposed. Since second derivatives appear in this formulation, the conforming finite element method requires C1 continuity. However, for many problems of practical interest (i.e. high Reynolds numbers) the second derivatives need not be included, thus allowing the use of more conventional C0 elements. Numerical results using this approach for a wall-driven contained flow within a square cavity verify the validity of the approach. Although the results were obtained for a two-dimensional problem using the p-version of the finite element method, the approach presented here is general and remains valid for the conventional h-version as well as three-dimensional problems. 相似文献
12.
In this paper we consider a discretization of the incompressible Navier-Stokes equations involving a second-order time scheme based on the characteristics method and a spatial discretization of finite element type. Theoretical and numerical analyses are detailed and we obtain stability results abnd optimal eror estimates on the velocity and pressure under a time step restriction less stringent than the standard Courant-Freidrichs-Levy condition. Finally, some numerical results obtained wiht the code N3S are shown which justify the interest of this scheme and its advantages with respect to an analogous first-order time scheme. © 1997 John Wiley & Sons, Ltd. 相似文献
13.
The incompressible, two-dimensional Navier-Stokes equations are solved by the finite element method (FEM) using a novel stream function/vorticity formulation. The no-slip solid walls boundary condition is applied by taking advantage of the simple implementation of natural boundary conditions in the FEM, eliminating the need for an iterative evaluation of wall vorticity formulae. In addition, with the proper choice of elements, a stable scheme is constructed allowing convergence to be achieved for all Reynolds numbers, from creeping to inviscid flow, without the traditional need for upwinding and its associated false diffusion. Solutions are presented for a variety of geometries. 相似文献
14.
A pressure-smoothing scheme for Stokes and Navier–Stokes flows of Newtonian fluids and for Stokes flow of Maxwell fluids is described. The stress deviator obtained from the calculated velocity field is substituted into the governing equilibrium equation. The resulting equation is then solved to obtain a new, smoothed pressure by a least square finite element method. 相似文献
15.
Bo-Nan Jiang 《国际流体数值方法杂志》1992,14(7):843-859
A least-squares finite element method based on the velocity–pressure–vorticity formulation was proposed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to the saddle point problem of the classic mixed method and can thus accommodate equal-order interpolations. The method has no parameter to tune. The associated algebraic system is symmetric and positive definite. In order to show the validity of the method for high-Reynolds-number problems, this paper provides numerical results for cavity flow at Reynolds number up to 10 000 and backward-facing step flow at Reynolds number up to 900. 相似文献
16.
This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q 1 rot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H 1-norm and the pressure in the L 2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results. 相似文献
17.
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed.
To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for
the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations
by means of the local- truncation-error-analysis technique. The continuous projection equations are discretized temporally
and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme.
The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability
analysis is performed on this projection method showing the probability of its being stable. The stability of the present
scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated
by several numerical test cases.
The project supported by the China NKBRSF (2001CB409604)
The English text was polished by Yunming Chen 相似文献
18.
We note in this study that the Navier-Stokes equations, when expressed in streamfunction-vorticity form, can be approximated to fourth-order accuracy with stencils extending only over a 3 x 3 square of points. The key advantage of the new compact fourth-order scheme is that it allows direct iteration for low-to-medium Reynolds numbers. Numerical solutions are obtained for the model problem of the driven cavity and compared with solutions available in the literature. For Re ? 7500 point-SOR iteration is used and the convergence is fast. 相似文献
19.
Some finite element approximations of incompressible flows, such as those obtained with the bilinear velocity–constant pressure element (Q1?P0), are well known to be unstable in pressure while providing reasonable results for the velocity. We shall see that there exists a subspace of piecewise constant pressures that leads to a stable approximation. The main drawback associated with this subspace is the necessity of assembling groups of elements, the so-called ‘macro-elements’, which increases dramatically the bandwidth of the system. We study a variant of Uzawa's method which enables us to work in the desired subspace without increasing the bandwidth of the system. Numerical results show that this method is efficient and can be made to work at a low extra cost. The method can easily be generalized to other problems and is very attractive in three-dimensional cases. 相似文献
20.
M. Sedl 《国际流体数值方法杂志》1993,16(11):953-966
This paper discusses the calculation of quasi-three-dimensional incompressible viscous flow by FEM. The Reynolds-averaged Navier-Stokes equations are solved in curvilinear co-ordinates by the reduced integration and penalty method (RIP). Streamline upwind artificial viscosity (SUAV) and the Baldwin-Lomax algebraic model of turbulence are used. Time discretization is by the general implicit θ-method. 相似文献