首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with furfural, 3-methyl-2-thiophene-carbaldehyde, 2-pyrrolecarbaldehyde, 4-pyridinecarbaldehyde and pyridoxal hydrochloride gave 6-chloro-2-[2-(2-furylmethylene)-1-methylhydrazino]quinoxaline 4-oxide 5a , 6-chloro-2-[1-methyl-2-(3-methyl-2-thienyl-methylene)hydrazino]quinoxaline 4-oxide 5b , 6-chloro-2-[1-methyl-2-(2-pyrrolylmethylene)hydrazino]quinoxa-line 4-oxide 5c , 6-chloro-2-[1-methyl-2-(4-pyridylmethylene)hydrazino]quinoxaline 4-oxide 5d and 6-chloro-2-[2-(3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridylmethylene)-1-methylhydrazino]quinoxalme 4-oxide 5e , respectively. The reaction of compound 5a or 5b with 2-chloroacrylonitrile afforded 8-chloro-3-(2-furyl)-4-hydroxy-1-methyl-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6a or 8-chloro-4-hydroxy-1-methyl-3-(3-methyl-2-thienyl)-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6b , respectively, while the reaction of compound 5e with 2-chloroacrylonitrile furnished 11-chloro-7,13-dihydro-4-hydroxy-methyl-5,14-methano-1,7-dimethyl-16-oxopyrido[3′,4′:9,8][1,5,6]oxadiazonino[3,4-b]quinoxaline 7.  相似文献   

2.
Novel 4-chlorophenylhydrazono-3-oxo-1,2,3,4-tetrahydropyridazino[3,4-b]quinoxalines 10a-c were synthesized by the cyclization of the α-hydrazonohydrazides 8a-c. The chlorination of 10a with phosphoryl chloride afforded 3-chloro-4-[2-(o-chlorophenyl)hydrazino]pyridazino[3,4-b]quinoxaline 12.  相似文献   

3.
Novel 1-aryl-1H- and 1-aryl-3-heteroaryl-1H-pyrazolo[3,4-b]quinoxalines (flavazoles) 9a-c, 12, 13 were synthesized from 3-methyl-2-oxo-1,2-dihydroquinoxaline 5 and the 3-triazolylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline 6, respectively, via a facile hydrazone synthesis using aryl diazonium salts. Some of the above flavazoles and their related compounds exhibited the antifungal activity in some extent. The above results are described.  相似文献   

4.
The reactions of 3-methyl-2-oxo-1,2-dihydroquinoxaline 3 with chlorophenyl diazonium salts afforded the hydrazones 4a-c , whose chlorinations with phosphoryl chloride gave the dichlorides 5a-c . Refluxing of the dichlorides 5a-c and base in N,N-dimethylformamide provided the 1-aryl-1H-pyrazolo[3,4-b]quinoxalines 6a-c .  相似文献   

5.
The 1,3-dipolar cycloaddition reaction of the quinoxaline 4-oxides 4a,b with 2-chloroacrylonitrile gave the 2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxalines 5a,b , respectively, which were converted into the 2,3,4,6-tetrahydro-1H-1,2-diazepino[3,4-b]quinoxalines 7a,b and 8a,b , respectively.  相似文献   

6.
Bishydroxyiminoquinoxalines 3a-b react with ethyl chloroformate 4 to afford the furazano[3,4-b]quinoxalines 5a-b . Bishydroxyiminobenzoxazines 6a-c on treatment with 4 are converted into the fused oxadiazolones 7a-c and 8a-c along with the bisethoxycarbonyloxyimino-derivatives 9a-c . From the reactions of 4 with the oxanilide dioximes 12a-c compounds 13a-c and 14a-b are obtained.  相似文献   

7.
The reaction of the 6-chloro-2-(1-methyl-2-thiocarbamoylhydrazino)quinoxaline 4-oxides 3a-d with trifluoroacetic anhydride gave the 2-(N-aryl)trifluoroacetamido-8-chloro-4-methyl-4H-1,3,4-thiadiazino-[5,6-b]quinoxalines 7a-d , respectively, while the reflux of compounds 3a-c in N,N-dimethylformamide afforded the mesoionic triazolo[4,3-a]quinoxaline 4 . Hydrolysis of compounds 7a-d with triethylamine/water provided the 2-arylamino-8-chloro-4-methyl-4H-1,3,4-thiadiazino[5,6-b)]quinoxalines 8a-d , respectively.  相似文献   

8.
The pyridazino[3,4-b]quinoxaline 12 was synthesized by the cyclization of the α-arylhydrazonoacyl-hydrazide 11. The reaction of compound 12 with phosphoryl chloride gave pyridazino[3,4-b]quinoxaline 13, whose reactions with sodium azide or cyclic secondary amines provided pyridazino[3,4-b]quinoxalines 14,17 and 18, respectively. The acylhydrazide 15 was also cyclized to pyridazino[3,4-b]quinoxaline 16.  相似文献   

9.
Starting with 3-amino-2-quinoxalinecarbonitrile 1,4-dioxide 1 , a new series of quinoxaline derivatives was prepared through chemical modifications of the 2-cyano and 3-amino groups. Nitration of 3-amino-2-quin-oxalinecarbonitrile 3 afforded the 7-nitro derivative 6 . Diazotation of 3 gave the 3-chloro compound 9 . 2,3-Quinoxalinedicarbonitrile 14 was obtained from 9 . Pyridazino[4,5-b]quinoxalines 15 and 16 were prepared by condensing 14 with hydrazine hydrate. A triazolo[4,5-b]quinoxaline 18 , a isothiazolo[4,5-b]quinoxaline 20 and two pyrazolo[3,4-b]quinoxalines 21 and 22 were identified. Compounds were tested as cytotoxic agents both in oxic and in hypoxic cells.  相似文献   

10.
The pyridazino[3,4-b]quinoxalines 6a,b and pyrazolo[3,4-b]quinoxaline hydrochloride 9 were synthesized by the 1,3-dipolar cycloaddition reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5 with dimethyl or diethyl acetylenedicarboxylate and 2-chloroacrylonitrile, respectively. The reaction mechanisms were postulated for the formation of 6a,b and 9 .  相似文献   

11.
This paper describes the synthesis of 1-hydrazinopyridazino[4,5-b]quinoxaline ( 10 ), tetrazolo[4,3-b]pyridazino[4,5-b]quinoxaline ( 11 ) and some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 . Starting with 2-ethoxycarbonyl-3-methylquinoxaline 1,4-dioxide ( 1 ), 1,2-dihydro-1-oxopyridazino[4,5-b]quinoxaline ( 5 ) was prepared by three different ways: (a) chlorination of 1 in acetic acid gave 2-ethoxycarbonyl-3-dichloromethylquinoxaline 1,4-dioxide, which reacts with an excess of hydrazine to give about 60% of 5 ; (b) oxidation of 1 with selenium dioxide gave 90% of 2-ethoxycarbonyl-3-formylquinoxaline 1,4-dioxide ( 3 ), which reacts with hydrazine to give 5 (63%); (c) compound 3 was treated with hydrazine to give 1,2-dihydro-1-oxopyridazino-[4,5-b]quinoxaline 1,4-dioxide ( 4 ) (70%), which by reduction with sodium dithionite gave 5 (80%). Compound 5 reacts with phosphorus pentasulfide or the Lawesson reagent to give 1,2-dihydro-1-thiocarbonylpyridazino[4,5-b]quinoxaline ( 9 ), which treated with hydrazine gave 5 (80%). This last compound reacts with nitrous acid to give 11 . Some hydrazones 12 from 10 are described. Heating the aldehyde hydrazones 12a,c,d with dimethylsulfoxide some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 were obtained. Compound 13a was also obtained in the reaction of 10 with benzoyl chloride. Reaction of 3 with phenylhydrazine gave 1,2-dihydro-1-oxo-2-phenylpyridazino[4,5-b]quinoxaline ( 6 ). Reactions of 5 with acetic anhydride and dimethylsulfate gave, respectively, 1-acetoxypyridazino[4,5-b]quinoxaline ( 8 ) and 1,2-dihydro-1-oxo-2-methylpyridazino-[4,5-b]quinoxaline ( 7 ). All the compounds were characterized by elemental analysis and 1H-nmr spectra. Compounds 5 and 10 showed antihypertensive activity in rats.  相似文献   

12.
The novel 1H-pyrazolo[3,4-b]quinoxalines (flavazoles) 9–15 were synthesized from 3-methoxycarbonylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline 6 via a convenient hydrazone synthesis, and these flavazoles were clarified to have the antifungal activity.  相似文献   

13.
A new class of quinolones, 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxaline-3-carboxylic acids and related compounds, were synthesized via oxidation of 1,5-dihydropyridazino[3,4-b]quinoxalines obtained from 2-hydrazinoquinoxaline 4-oxides. Some of the 1,5-dihydropyridazino[3,4-b]quinoxalines, 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxaline-3-carboxylic acids, and related compounds showed biological activity.  相似文献   

14.
It has been found that malonodinitrile and 2-(6-R1-oxo-3,4-dihydro-2-quinazolyl)acetonitrile in the presence of triethylamine undergo hetarylation by 5,6-dichloro-2,3-pyrazinedicarbonitrile at the active methylene group to give the triethylammonium salt of 2-(3-chloro-5,6-dicyano-2-pyrazinyl)malononitrile or 5-chloro-6-cyano(6-R1-4-oxo-1,2,3,4-tetrahydro-2-quinazolylidene)methyl-2,3-pyrazinedicarbonitriles. Reaction of these with primary amines leads to annelation of the pyrrole ring at the pyrazine [b] edge to give 6-amino-5-R-5H-pyrrolo[2,3-b]pyrazine-2,3,7-tricarbonitriles and 6-amino-5-R2-7-(6-R1-4-oxo-3,4-dihydro-2-quinazolyl)-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles respectively.  相似文献   

15.
The reaction of the 1,2-diazepino[3,4-b]quinoxalines 2a,b or 3a,b with N-bromosuccinimide/water resulted in ring transformation to give the 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxalines 4a,b , respectively.  相似文献   

16.
The reaction of 3,4-diamino-5-oxo-4,5-dihydro-l,2,4-triazine or its 6-methyl or 6-phenyl substituted derivatives and ethyl acetoacetate gave three compounds: 4,7-dioxo-9-methyl-1,4,6,7-tetrahydro-as-triazino[4,3-b]-1,2,4-triazepine in poor yield, isomeric 4,9-dioxo-7-methyl-1,4,8,9-tetrahydro-as -triazino[4,3-b]-1,2,4-triazepine and by competitive cyclisation, 2-methyl-7-oxo-3,7-dihydro-s-triazolo[3,2-c]-1,2,4-triazine. By condensation of 3-methylamino-4-amino-5-oxo-4,5-dihydro-1,2,4-triazine with ethyl acetoacetate, the formation of 4,9-dioxo-7,10-dimethyl-4,8,9,10-tetrahydro-as-triazino[4,3-b]-1,2,4-triazepine was strongly favored.  相似文献   

17.
Reactions of 1,3-disubstituted 5-aminopyrazole-4-carbonitrile derivatives 3a-o with dimethyl acetylenedicarboxylate in the presence of potassium carbonate in dimethyl sulfoxide gave the corresponding dimethyl 1,3-disubstituted pyrazolo[3,4-b]pyridine-5,6-dicarboxylates 4a-o which were allowed to react with excess hydrazine hydrate under ethanol refluxing conditions followed by heating at 250-300° to give 1,3-disubstituted 4-amino-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 7a-s in good yields. Similarly, 1,3-disubstituted 4-hydroxy-1H-pyrazolo[4′3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 10a-c were obtained from alkyl 1,3-disubstituted 5-aminopyrazole-4-carboxylates 8a-c . These tricyclic pyridazine derivatives were alternatively synthesized from 4-hydroxypyrrolo[3,4-e]pyrazolo[3,4-b]pyridine-5,7-diones 13a-c prepared by reactions of 5-aminopyrazoles (8e-g) with methyl 1-methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carboxylate (11a) followed by the Gould/Jacobs reaction. 1-Methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carbonitrile smoothly reacted with 2-aminobenzimidazoles to give the corresponding 5-amino-3-methyl-1H-pyrrolo[3′4′:4,5]pyrimido[1,2-a]benzimidazole-1,3(2H)-diones 16a-e , which were readily converted to the desired 12-aminopyridazino[4′,5′:4,5]pyrimido-[1,2-a]benzimidazole-1,4(2H,3H)-diones 17a-e in good yields. Other pyridazinopyrimidine derivatives were also obtained by the reaction of the corresponding 2-aminoheterocycles with the maleimide in good yields. Substituted anilines reacted 11b in refluxing methanol to give the corresponding methyl 4-phenylamino-1-methyl-2,5-dioxo-1H-pyrrole-3-carboxylates 25a-e which were converted in good yields to 2-methylpyrrolo[3,4-b]quinoline derivatives 26a-e by heating in diphenyl ether. Reaction of 26a-c with hydrazine hydrate gave 10-hydroxypyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 27a-e in good yields. The desired 10-aminopyridazino[4,5-b]pyridazine-1,4(2H,3H)-diones 30a-e were obtained in good yields by the chlorination of 4a-e with phosphorus oxychloride followed by aminolysis with 28% ammonium hydroxide. Some pyridazino[4,5-a][2.2.3]cyclazine-1,4(2H,3H)-diones 37a,b as luminescent compounds were synthesized via several steps from indolizine derivatives. The key intermediates, dimethyl 6-dimethylamino[2.2.3]cyclazine-1,2-dicarboxylates 34, 36 , were synthesized by the [8 + 2] cycloaddition reaction of the corresponding 7-dimethylaminoindolizines 33, 35 with dimethyl acetylenedicarboxylate in the presence of Pd-C in refluxing toluene. Some were found to be more efficient than luminol in light production. 4-Amino-3-methylsufonyl-1-phenyl-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-dione (7r) , 10-hydroxypyridazino[4,5-b]-quinoline-1,4(2H,3H)-diones 27a-e , and 10-aminopyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 30a-e showed the greatest chemiluminescence intensity in the presence of hydrogen peroxide peroxidase in a solution of phosphate buffer at pH 8.0.  相似文献   

18.
A series of 5-cyano-6-aryluracils and 2-thiouracils 1a-h has been prepared and alkylated to 1,3-dialkyluracils 2a-d and 2-alkylthiouracils, 3, 4 and 6 , by electrophilic substitution with alkyl halides. Reaction of 1b with dibromoethane and 1,3-dibromopropane gave the corresponding bicyclic products, 7-aryl-6-cyano-2,3-dihydrothiazolo[3,2-a]pyrimidin-5-ones 5a,b and 8-aryl-7-cyano-3,4-dihydro-2H-pyrimido[2,3-b][1,3]thiazin-6-ones 5c-g . Nucleophilic substitution on 6 with hydrazine led to 7 which on refluxing with formic acid gave 5-aryl-6-cyano-8-methyl-s-triazolo[3,4-b]pyrimidin-7-ones ( 9 ), while with acetic and propionic acids only 2-acylhydrazino-3-methyl-4-oxo-5-cyano-6-arylpyrimidines 8a,b were isolated. The hydrazine 7 undergoes cyclization with acetylacetone and methyl dimethylmercaptoacrylate providing 2-(pyrazol-1-yl)-3-methyl-4-oxo-5-cyano-6-substituted pyrimidines 10 , and 11 . Some of the compounds were screened for antibacterial-, antifungal- and antiviral activities and a few of them showed significant chemotherapeutical activities.  相似文献   

19.
Cyclization of thioglycolic acids derivatives 3a-d gave isoindolo[1,2-b]thieno[2,3(3,2 or 3,4)-e][1,3]-thiazocines 4a-d . Isoindolo[2,1-a]thieno[2,3(3,2 or 3,4)-f][1,4] or [1,5]diazocines 10b or 11a-c were synthesized from Beckmann or Schmidt rearrangement of the ketones 7a-c .  相似文献   

20.
Reactions of furazano[3,4-b]quinoxalines 1 with phosphorus ylides 2 afford the transylidation product 3 and/or 4,9-dihydrofurazano[3,4-b]quinoxalines 4. Oxidation of 3 with phenyliodide bis-trifluoroacetate gave the fused furan derivative 13 in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号