首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of binuclear palladium(II) salicylaldiminato dithiosemicarbazone complexes have been synthesized and characterized. The palladium complexes were obtained by the reaction of various ethylene- and phenylene-bridged dithiosemicarbazones with Pd(PPh3)2Cl2. The free salicylaldimine ligands and their palladium complexes were characterized by NMR and IR spectroscopies, ESI-mass spectrometry, elemental analyses and for two representative complexes also by X-ray diffraction. In both metal complexes, the solid-state structures show the two palladium centers to be coordinated in a slightly distorted square-planar geometry, which gives rise in each case to five- and six-membered chelate rings. The salicylaldimine thiosemicarbazone ligands coordinate to palladium in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiolate sulfur atoms.  相似文献   

2.
The reduction of 2‐cyanopyridine by sodium in dry methanol in the presence of thiosemicarbazide produces 2‐pyridineformamide thiosemicarbazone, HAm4DH. The reactions of the potentially tridentate ligand HAm4DH with salts of Zn, Cd, and Hg gave a variety of metal‐ligand complexes. The complexes were characterized by mass spectrometry as well as IR and multinuclear NMR (1H, 13C, 13C CP/MAS, 113Cd, 199Hg) spectroscopy. The crystal structures of [Zn(Am4DH)(OAc)]2·H2O, [Hg(HAm4DH)2Br2]·C2H5OH and [Hg(μ‐S‐Am4DH)Br] were obtained. Coordination of anionic Am4DH? occurs through the pyridyl nitrogen, imine nitrogen and thiolato sulfur atoms, while the neutral ligands in [Hg(HAm4DH)2Br2] coordinate as monodentate ligands through their thione sulfur atoms. One of the acetate ligands in [Zn(Am4DH)(OAc)]2·H2O is bridging monodentate and the other bridging bidentate. [Hg(μ‐S‐Am4DH)Br] features five‐coordinate mercury centers with bridging thiolato sulfur atoms. The intermolecular arrangement is dictated by hydrogen bonding from the amino groups and by π‐π stacking of the pyridine rings.  相似文献   

3.
Synthesis, characterization, microbiological activity and electrochemical properties of the Schiff-base ligands A1–A5 and their Cd(II) and Cu(II) metal complexes are reported. The ligands and their complexes have been characterized by elemental analysis, FT–IR, UV–Vis, 1H- and 13C-NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands are bidentate, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff-base ligands A1–A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the chosen strains include Bacillus megaterium and Candida tropicalis. The electrochemical properties of the ligands A1–A5 and their Cu(II) metal complexes have been investigated at different scan rates (100–500?mV?s?1) in DMSO.  相似文献   

4.
Bimetallic and trimetallic complexes of stoichiometry [M(acacen)M′Y2], [M(sacacen)M′Y2], and {[M(acacen)]2M′Y2} have been prepared by reaction of the appropriate square-planar Schiff base metal complex with various secondary metal salts in toluene and/or absolute ethanol. Systems which are reported here include those where M = Cu(II); M′ = Cu(II), Ni(II), Co(II), Mn(lI) and Zn(II); Y? = Cl?, Br?, and NO3 ?. Trinuclear complexes have been isolated only for {[Cu(acacen)]2M′(NO3)2} where M′ = Cu(lI) or Mn(II); binuclear complexes result from all other combinations. The geometry of the chelated Cu(II) ion is square-planar in the bimetallic complexes and possibly square-pyramidal in the trimetallic compounds, while that of the secondary metal ion depends on the coordination preference of M′, the nature of Y? and whether the bridging donor atoms are oxygen or sulfur. Probable structures of the new polynuclear complexes have been deduced from spectral, conductivity and magnetic measurements.  相似文献   

5.
Coumarilate–nicotinamide complexes of CoII and ZnII were synthesized and investigated by elemental analysis, magnetic susceptibility, solid state UV–Vis, direct injection probe mass spectra, FTIR spectra, thermoanalytic TG-DTG/DTA, and crystal X-ray diffraction methods. It was obtained that both complex structures contain 2 mol aqua ligands, 2 mol coumarilate (CCA?) and 2 mol nicotinamide (NA) ligands per formula unit. The CCA? and NA ligands were bonded to metal cations as monodentate through acidic oxygen and nitrogen of pyridine ring, respectively. Thermal decomposition of each complex starts with dehydration and continue removing of 1 mol NA ligand. The thermal dehydration of the complexes takes place in one or two steps. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The final decomposition products are found to be metal oxides.  相似文献   

6.
Formation constants of mixed ligand complexes of Cu2+, Zn2+, Ni2+, Co2+, and Mn2+,with cyadine-5′-monophosphoric acid (CMP) and various primary ligands such as 1,10-phenanthroline(phen), glycylglycine(glygly) and salicylic acid (sal) have been determined in aqueous solution at 35°C and 0.1 M (KNO3) by potentiomeric measurements. The acid dissociation constants of all the above mentioned ligands together with their 1 : 1 binary metal complex formation constants were also measured at 35°C. In general all the 1 : 1 binary complexes follow the Irving-Williams order of stability. Further the binary metal complexes of primary ligands are more stable than their ternary complexes with CMP. For ternary complexes, Δ(log K) values seem to change from positive to highly negative as the coordinating atoms of the primary ligands were varied from N,N to N,O? to O?O?. The higher stability of ternary complexes involving phen is due to its Π-bonding interaction with the above metal ions and the relative decrease in the stability of other ternary systems is due to the coulombic repulsion of donor oxygen atoms of primary and secondary ligands. Thus for ternary complexes the stabilities follow a decreasing order of M-phen-CMP > M-glygly-CMP > M-sal-CMP.  相似文献   

7.
张曙光  冯云龙 《中国化学》2009,27(5):877-881
四唑酸(–CN4H)与羧酸(–COOH)具有相似的酸性。对苯酚四唑硫酮(H2L)可以作为单齿(–S或–N)或双齿(–N, N或–N, S)配体与金属离子配位形成配位化合物。合成了4个以H2L为配体的金属(II)配合物:Co(HL)2(Py)2(H2O)2 (1), [Mn(HL)2(H2O)4]·2H2O (2), Mn(HL)2(Phen)2 (3), and [Zn(HL)2(Phen)2]·0.5H2O·1.5CH3OH (4),并用X−射线单晶衍射法测定了晶体结构。晶体结构分析表明,在这些配合物中所有的中心金属原子均呈现六配位的八面体构型。在配合物1和2中,HL–配体以氧原子与中心金属原子配位,而在配合物3和4中HL–配体则以硫原子与中心金属原子配位。  相似文献   

8.
Two aminoethanol derivatives of aminophenol ligands were synthesized and characterized by IR and 1H NMR spectroscopies. The binuclear iron(III) complexes of these ligands have been prepared and characterized by IR, 1H NMR and UV-Vis spectroscopic techniques, cyclic voltammetry, single crystal X-ray diffraction and magnetic susceptibility studies. X-ray analysis revealed binuclear complexes, Fe2(L2), in which Fe(III) centers are surrounded by two phenolate and hydroxyl oxygen atoms, and amine nitrogens of the ligands. The metal active sites of both complexes are held together by the two above mentioned hydroxyl bridges. Variable temperature magnetic susceptibility indicates antiferromagnetic coupling between the iron centers of both complexes. This exchange coupling is stronger for Fe2(Lae)2, such that it shows a room temperature strong coupling between the two iron centers. The investigated complexes undergo irreversible electrochemical oxidation and reduction.  相似文献   

9.
Green microwave supported synthesis, spectral, antimicrobial, DNA cleavage, and antioxidant studies of Ge(IV) complexes with bio-potent ligands, 1-acetylferrocenehydrazinecarboxamide (L1H) and 1-acetylferrocenehydrazinecarbothioamide (L2H) have been carried out. The ligands and their respective complexes have been characterized on the basis of elemental analysis, IR, 1H and 13C NMR spectra, and X-ray powder diffraction studies. The ligands are coordinated to the Ge(IV) via azomethine nitrogen and thiolic sulfur atom/ enolic oxygen atom. Both ligands and their complexes demonstrated appreciable fungicidal and bactericidal properties. The metal complexes demonstrated stronger antimicrobial than the respective free ligands. DNA cleavage activity of the complexes study revealed higher activity of the complexes than the ligands. Antioxidant activity of the complexes was tested for their hydrogen peroxide scavenging.  相似文献   

10.
Some metal complexes of Schiff bases have been prepared by the interactions of palladium(II) and platinum(II) chloride with 5-chloro-1,3-dihydro-3-[2-(phenyl)-ethylidene]-2H-indol-2-one-hydrazinecarbothioamide(L1H) and 5-chloro-1,3-dihydro-3-[2-(phenyl)-ethylidene]-2H-indol-2-one-hydrazinecarboxamide(L2H), in bimolar ratios. All the new compounds have been characterized by elemental analyses, conductance measurements, molecular weight determinations, IR and 1H NMR spectral studies. The spectral data are consistent with a square planar geometry around Pd(II) and Pt(II) in which the ligands act as neutral bidentate and monobasic bidentate ligands, coordinating through the nitrogen and sulfur/oxygen atoms. Free ligands and their metal complexes were screened for their antimicrobial activity on different species of pathogenic fungi and bacteria and their biopotency has been discussed.  相似文献   

11.
《Polyhedron》2001,20(15-16):1891-1896
The tris(mercaptophenylimidazolyl)borate iron and cobalt complexes [TmPh]2M (M=Fe, Co) have been synthesized by reaction of [TmPh]Tl with MI2. Structural characterization by X-ray diffraction demonstrates that the potentially tridentate [TmPh] ligand binds through only two sulfur donors in these ‘sandwich’ complexes and that the ‘tetrahedral’ metal centers supplement the bonding by interactions with the two B–H groups. Comparison of the structures of [TmPh]2M (M=Fe, Co) with the related tris(pyrazolyl)borate [TpPh]2M counterparts indicates that the tris(mercaptoimidazolyl) ligand favors lower primary coordination numbers in divalent metal complexes. The trivalent complexes, {[TpPh]2Fe}[ClO4] and {[pzBmMe]2Co}I, however, exhibit octahedral coordination, with the ligands binding using their full complement of donor atoms.  相似文献   

12.
Complexation properties of dinaphthosulfide-substituted macrocyclic diamides 1 and 2 with some metal cations that have been obtained by conductometric method are described with quantum mechanics calculations. To do this, the most stable structures of ligands, Hg2+-ligand complexes, ligand-MeOH and ClO4 ?–MeOH are optimized at HF/Lanl2dz level of theory and the most important interactions are analyzed by atoms in molecules (AIM) theory. These calculations predict the existence of strong interaction between Hg2+ cation and ligands 1 and 2, particularly, S–Hg2+ interaction. The different conductometric behaviors of complexation of ligands 1 and 2 with metal ions are interpreted on the basis of the calculated intramolecular hydrogen bonds in ligands and intermolecular hydrogen bonds between ligands and methanol as a solvent and perchlorate as a counter ion. In addition, binding energies between Hg2+ and ligands are also calculated by HF/Lanl2dz level of theory. Results show that all theoretical predictions are in line agreement with the experimental data.  相似文献   

13.
The reaction of 2,2′:4,4′′:4′,4′′′‐quaterpyridyl (qtpy), with d6 ruthenium(II) (RuII), and rhenium(I) (ReI) metal centers has been investigated. The pendant pyridyl groups on the products have also been methylated to produce a second series of complexes containing coordinated Meqtpy2+. The absorption spectra of the complexes are dominated by intraligand and charge‐transfer bands. The ruthenium(II) complexes display broad unstructured luminescence consistent with emission from a Ru(d)→diimine(π*) manifold in acetonitrile solutions. In aqueous solutions, their emissions are weaker and the lifetimes are shorter. This effect is particularly acute for complexes incorporating coordinated dipyridylpyrazine, dppz, ligands. Although the emission of the ruthenium(II) complexes containing Meqtpy2+ is generally shorter than their qtpy analogs, it is notable that solvent‐dependent effects are much less intense. The rhenium(I) complexes also display broad unstructured luminescence but, compared with the ruthenium(II) systems, they have a relatively short lifetime in acetonitrile. Electrochemical studies reveal that all of the RuII complexes display chemically reversible metal‐based oxidations. ReI complexes only display irreversible metal‐based oxidations. In most cases, the reduction processes were not fully chemically reversible. The electrochemical and optical studies reveal that the nature of the lowest excited state of these complexes—particularly, the systems incorporating dppz—is highly dependent on the nature of the coordinated ligands. Calculations indicate that, although the excited state of most of the complexes is centered on the qtpy or Meqtpy2+ ligands, the excited state of the complexes containing dppz ligands is switched away from the dppz by qtpy methylation. A crystallographic study on one of the dicationic ruthenium(II) structures reveals that it forms an inclusion complex with benzene.  相似文献   

14.
Geminally diaurated μ2‐aryl complexes have been prepared where gold(I) centers were bridged by the semirigid diphosphine ligands bis(2‐diphenylphosphinophenyl)ether (DPEphos) and 4,6‐bis(diphenylphosphanyl)dibenzo[b,d]furan (DBFphos). Diaurated complexes were synthesized in ligand redistribution reactions of the corresponding di‐gold dichlorides with di‐gold diaryls (six of them new) and silver(I) salts. Diaurated complexes were isolated as salts of the minimally coordinating anions SbF6? and ReO4?. Efforts to prepare salts of the tetraarylborate [B(3,5‐(CF3)2C6H3)4]? led to transmetalation from boron, with crystallization of the fluorinated aryl complex. The new complexes were characterized by multinuclear NMR, absorption and emission spectroscopies, 77 K emission lifetimes, and by combustion analysis; three are crystallographically characterized. Structures of geminally diaurated aryl ligands are compared to those of mono‐aurated analogues. Both crystal structures and density‐functional theory calculations indicate slight but observable disruptions of aryl ligand aromaticity by geminal di‐gold binding. An intermolecular aurophilic interaction in one structurally authenticated complex was examined computationally.  相似文献   

15.
Four heterocyclic Schiff-base ligands derived from condensation of 4-amino-1,3 dimethyl-2,6 pyrimidine-dione with 2-hydroxybenzaldehyde, 2-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde and 4-(dimethylamino) benzaldehyde, (HL1, L2, HL3and L4), respectively, and their Co(II) and Ni(II) complexes have been prepared and characterized via elemental analysis, molar conductance, magnetic moment, thermal and XRPD analysis as well as spectral data (IR, 1H-NMR, mass and solid reflectance). IR data reveal that the ligands are bidentate neutral ligands except HL1, which is monobasic tridentate with coordination sites azomethine (N), carbonyl (O) and phenolic (O). Conductance data suggest that all complexes are non-electrolytes, except cobalt(II) complexes of L2and HL3are 1 : 1 electrolytes. The mass spectra confirm the proposed structure of the ligands and their complexes. The solid reflectance spectral data and magnetic moment measurements suggest octahedral, tetrahedral and square planar geometrical structures for the metal complexes. The spectral data were utilized to compute the important ligand field parameters B, β and Dq; LFSE also was calculated. The thermal behavior is also studied. Antibacterial and antifungal properties of the ligands and their complexes show broad-spectrum activities and the metal complexes show higher activity than the free ligands.  相似文献   

16.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on, and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods. The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition, the genotoxic properties of the ligands were studied.  相似文献   

17.
The reactions of dimethyltin dichloride with nitrogen and sulfur donor ligands derived by condensation of S‐benzyldithiocarbazate with indol‐3‐carboxylaldehyde, thiophene‐2‐aldehyde and furfuraldehyde have been investigated in 1:1 and 1:2 molar ratios in anhydrous alcohol. These ligands act as mononegatively charged bidentate species and coordinate to the central tin(IV) atom through the thiosulfur by proton exchange with the azomethine nitrogen. The newly synthesized complexes have been characterized by elemental analysis, conductance measurements and molecular weight determinations. The mode of bonding and the geometry of the complexes have been suggested on the basis of infrared, electronic and 1H, 13C and 119Sn NMR spectroscopy, and probable structures have been assigned to these complexes. A few representative ligands and their tin(IV) complexes have also been screened for their antifungal and antibacterial activities and found to be quite active in this respect. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The alkali metal‐nickel carbonyl anions ENi(CO)3? with E=Li, Na, K, Rb, Cs have been produced and characterized by mass‐selected infrared photodissociation spectroscopy in the gas phase. The molecules are the first examples of 18‐electron transition metal complexes with alkali atoms as covalently bonded ligands. The calculated equilibrium structures possess C3v geometry, where the alkali atom is located above a nearly planar Ni(CO)3? fragment. The analysis of the electronic structure reveals a peculiar bonding situation where the alkali atom is covalently bonded not only to Ni but also to the carbon atoms.  相似文献   

19.
Two novel Schiff base ligands, 4-((3-(trimethoxysilyl)propylimino)methyl)benzene– 1,2,3-triol (L1H) and 4-((3-(triethoxysilyl)propylimino)methyl)benzene–1,2,3-triol (L2H), have been synthesized by the reaction of 2,3,4-trihydroxybenzaldehyde with 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane, respectively. The mononuclear CoII and CuII complexes of these Schiff bases were prepared. The complexes of the Schiff bases are formed by coordination of N, O atoms of the ligands. The proposed structures were confirmed by elemental analyses, FT-IR, and UV-visible spectroscopy, magnetic susceptibility, and conductance measurements; the 1H NMR spectra of the ligands were also recorded. The analytical data show that the metal to ligand ratio in the complexes containing silicon is 1:2. The electrochemical properties of the complexes have been investigated at 100 mVs?1 scan rate in DMSO. In addition, the antimicrobial activity of L1H and L2H Schiff ligands, and their [M(L1)2] and [M(L2)2] type coordination compounds, were investigated.  相似文献   

20.
New complexes of general empirical formula, [M(NS)2] · nCHCl3 (M = NiII, CuII, PdII or PtII; NS = anionic form of the thiophene-2-aldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate; n = 0, 1) have been synthesized and characterized by physico-chemical techniques. Magnetic and spectroscopic evidence support a square-planar structure for these complexes. The crystal structures of the [Ni(tasbz)2] and [Cu(tasbz)2] · CHCl3 complexes (tasbz = anionic form of the thiophene-2-aldehyde Schiff base of S-benzyldithiocarbazate) have been determined by X-ray diffraction. Both complexes have a trans-planar structure in which the two Schiff base ligands are coordinated to the metal(II) ion as uninegatively charged bidentate ligands via the thiolate sulfur and the azomethine nitrogen atoms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号