首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

2.
The kinetics and mechanisms of the unimolecular decompositions of phenyl methyl sulfide (PhSCH3) and benzyl methyl sulfide (PhCH2SCH3) have been studied at very low pressures (VLPP). Both reactions essentially proceed by simple carbon-sulfur bond fission into the stabilized phenylthio (PhS·) and benzyl (PhCH2·) radicals, respectively. The bond dissociation energies BDE(PhS-CH3) = 67.5 ± 2.0 kcal/mol and BDE(PhCH2-SCH3) = 59.4 ± 2 kcal/mol, and the enthalpies of formation of the phenylthio and methylthio radicals ΔH° ,298K(PhS·, g) = 56.8 ± 2.0 kcal/mol and ΔH°f, 298K(CH3S·, g) = 34.2 ± 2.0 kcal/mol have been derived from the kinetic data, and the results are compared with earlier work on the same systems. The present values reveal that the stabilization energy of the phenylthio radical (9.6 kcal/mol) is considerably smaller than that observed for the related benzyl (13.2 kcal/mol) and phenoxy (17.5 kcal/mol) radicals.  相似文献   

3.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

4.
A long‐standing controversy concerning the heat of formation of methylenimine has been addressed by means of the W2 (Weizmann‐2) thermochemical approach. Our best calculated values, ΔH°f,298(CH2NH) = 21.1±0.5 kcal/mol and ΔH°f,298(CH2NH2+) = 179.4±0.5 kcal/mol, are in good agreement with the most recent measurements but carry a much smaller uncertainty. As a byproduct, we obtain the first‐ever accurate anharmonic force field for methylenimine: upon consideration of the appropriate resonances, the experimental gas‐phase band origins are all reproduced to better than 10 cm?1. Consideration of the difference between a fully anharmonic zero‐point vibrational energy and B3LYP/cc‐pVTZ harmonic frequencies scaled by 0.985 suggests that the calculation of anharmonic zero‐point vibrational energies can generally be dispensed with, even in benchmark work, for rigid molecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1297–1305, 2001  相似文献   

5.
Four semiempirical methods (AM1, MNDO, PM3, and MINDO/3) are used to calculate the deformation angles of [n]paracyclophanes and their Dewar benzene isomers for n = 3… 10. The results obtained by all these methods are in good agreement with data from X-ray studies. We have determined the strain energies that, in both series of compounds, are due to two components: (1) the strain energy of deformation of the cycle (aromatic or Dewar Benzene skeletons) and (2) the strain energy of the oligomethylene chain. In [6]paracyclophane, the strain energy [SEring(MNDO) ≈? 32.9 kcal/mol] almost compensates the resonance energy (Eresonance ≈ 36 kcal/mol) so that its chemical properties are closer to alkenes than to benzenic compounds. To better reproduce the enthalpy of the valence isomerization [n]Dewar bezene → [n]paracyclophane, which is poorly calculated with these methods, a correction is proposed and the reaction enthalpy of [6]paracyclophane is estimated to be about ΔHr ≈ 15 ± 15 kcal/mol. It is found that MNDO and MINDO/3 need the smallest corrections, but MNDO leads to better geometries than MINDO/3. In conclusion, MNDO seems to be the best technique for further studies of these compounds. © 1992 by John Wiley & Sons, Inc.  相似文献   

6.
Heats of formation of BrONO2, BrONO, BrOOH, FOOH, FOOCl, CF3C(O)OOH, HC(O)OOH, CH3C(O)OOH, and [CH3C(O)O]2 are estimated from bond contributions taken from J. Phys. Chem., 100, 10150 (1996). They agree within ±2 kcal/mol with recent experimental or ab initio data. The resulting BDE(O(SINGLEBOND)O)=36 kcal/mol value in diacetyl peroxide requires the concerted assistance of exothermic C(SINGLEBOND)C(O) weakening in the transition state of its decomposition into free radicals. It also implies the existence of a previously unrecognized 12 kcal/mol nonbonded repulsion in acyl anhydrides. The formation of chloryl chlorate with ΔHf(O2ClOClO2)=50 kcal/mol, a marginally stable species toward dissociation into (ClO3+OClO), may account for observations made in the [O(3P+OClO] system at low temperatures. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 41–45, 1998.  相似文献   

7.
Using the ‘permutation of indices’ method proposed by Kaplan and Fraenkel, we could formulate the density-matrix equations required to fit the temperature-dependent 13C-NMR spectra observed with the title compounds. For 6Li13CHBr2 ( 1 ) and 6Li13CH2SC6H5 ( 2 ) an exchange mechanism is proposed by which monomers interchange C- and Li-atoms via a non-observed dimeric intermediate; the activation parameters of these intermolecular dynamic processes have been found to be ΔH = 10.2 kcal/mol, ΔS = 13.7 cal/mol·K for 1 and ΔH = 11.1 kcal/mol, ΔS = 20.6 cal/mol·K for 2 ((D8)THF as solvent). In the case of (6Li)butyllithium ( 3 ), the observed low-temperature spectra indicate that dimeric ( 3b ) and tetrameric ( 3a ) species are in dynamic equilibrium interchanging the C3HCH2 groups (and THF molecules) bonded to the 6Li-atoms. The relative concentrations of the dimer and of the tetramer have been determined by peak integration or by line-shape fitting; the ‘pseudo’- equilibrium constant, defined by Keq = [ 3b ]2/[ 3a ], was found to be 2.6·10?2 mol/1 (at ?88°) and corresponds to ΔGR (?88°) = 2 ΔG°f( 3b ) – ΔG°f( 3a ) = 1.34 kcal/mol. The activation parameters of the dynamic process responsible for the exchange were estimated as ΔH = 3.78 kcal/mol and ΔS = ?31.3 cal/mol·K. Tentative interpretation of the thermodynamic and kinetic parameters is given.  相似文献   

8.
Using a recently developed procedure for optimizing parameters for semiempirical methods,1 PM3 has been extended to a total of 28 elements. Average ΔHf errors for the newly parameterized elements are Be: 8.6, Mg: 8.4, Zn: 5.8, Ga: 14.9, Ge: 11.4, As: 8.5, Se: 11.1, Cd: 2.6, In: 11.3, Sn: 9.0, Sb: 13.7, Te: 11.3, Hg: 6.8, Tl: 6.5, Pb: 7.4, and Bi: 10.9 kcal/mol. For some elements the paucity of data has resulted in a method, which, while highly accurate, is likely to be only poorly predictive.  相似文献   

9.
The thermal unimolecular decomposition of 2-phenylethylamine (PhCH2CH2NH2) into benzyl and aminomethyl radicals has been studied under very-low-pressure conditions, and the enthalpy of formation of the aminomethyl radicals, ΔH°f, 298K (H2NCH2·) = 37.0 ± 2.0 kcal/mol, has been derived from the kinetic data. This result leads to a value for the C—H bond dissociation energy in methylamine, BDE(H2NCH2—H) = 94.6 ± 2.0 kcal/mol, which is about 3.4 kcal/mol lower than in C2H6 (98 kcal/mol), indicating a sizable stabilization in α-aminoalkyl radicals.  相似文献   

10.
A kinetic study has been made of the gas phase, I2-catalyzed decomposition of (CH3)2S at 630–650 K. Some I2 is consumed initially, reaching a steady-state concentration. The initial major products are CH4 and CH2S together with small amounts of CH3SCH2I, CH3I, HI, and CS2. The initial reaction corresponds to a pseudo-equilibrium: accompanied by: and which brings (I2) into steady state and a final complex reaction: From the initial rate of I2 loss it is possible to obtain Arrhenius parameters for the iodination: We measure k1, (644 K) = 150 L/mol s and from both the Arrhenius plot and independent estimates A1 (644 K) = 1011.2 ± 0.3 L/mol s. Thus, E1 = 26.7 ± 1 kcal/mol. From the steady-state I2 concentration, an assumed mechanism and the known rate parameters for the CH3I/HI system. It is possible to deduce KA (644) = 3.8 × 10?2 with an uncertainty of a factor of 2. Using an estimated ΔS (644) = 4.2 ± 1.0 e.u. we find ΔHA (644) = 7.0 ± 1.1 kcal. With 〈ΔCPA〉644 = 1.2 this becomes: ΔHA(298) = 6.6 ± 1.1 kcal/mol. Then ΔH (CH3SCH2I) = 6.3 ± 1 kcal/mol. Making the assumption that E?1 = 1.0 ± 0.5 kcal/mol we find ΔH (644) = 25.7 ± 0.7 kcal/mol and with 〈ΔCPI〉 = 1.2; ΔH = 25.3 ± 0.8 kcal/mol. This gives ΔH (CH3S?H2) = 35.6 ± 1.0 kcal/mol and DH (CH3SCH2? H) = 96.6 ± 1.0 kcal/mol. This then yields Eπ(CH2S) = 52 ± 3 kcal. From the observed rate of pressure increase in the system and the preceding data k3, is calculated for the step CH3SCH2 → CH3 + CH2S. From an estimated A-factor E3 is deduced and from the overall thermochemistry values for k?3 and E?3. A detailed mechanism is proposed for the I-atom catalyzed conversion of CH2S to CS2 + CH4.  相似文献   

11.
The thermal unimolecular decomposition of ethylbenzene, isopropylbenzene, and tert-butylbenzene was studied using the very-low-pressure pyrolysis (VLPP) technique. Each reactant decomposed by way of β C? C bond homolysis, producing methyl radicals and benzyl or benzylic-type radicals. RRKM calculations show that the observed rate constants, when combined with thermochemical estimates, are consistent with the following high-pressure rate expressions: \documentclass{article}\pagestyle{empty}\begin{document}$ \log k(\sec ^{ - 1}) = 15.3 - (72.7/{\rm \theta)} $\end{document} for ethylbenzene between 1053 and 1234 K, \documentclass{article}\pagestyle{empty}\begin{document}$ \log k(\sec ^{ - 1}) = 15.8 - (71.3/{\rm \theta)} $\end{document} for isopropylbenzene between 971 and 1151 K, and \documentclass{article}\pagestyle{empty}\begin{document}$ \log k(\sec ^{ - 1}) = 15.9 - (69.1/{\rm \theta)} $\end{document} for tert-butylbenzene between 929 and 1157 K, where θ (kcal/mol) = 2.303RT. Resulting activation energies combined with heat capacity and heat of formation data led to the following dissociation enthalpies and enthalpies of formation at 298 K: DH° (øCH(CH3)? CH3) = 73.8 kcal/mol, ΔHf° (øÇCH(CH3)) = 39.6 kcal/mol, DH° (øC(CH3)2? CH3) = 72.9 kcal/mol, and ΔHf° (øÇ(CH3)2) = 32.4 kcal/mol. Derived high-pressure rate constants are in good accord with results of lower temperature toluene- and aniline-carrier experiments.  相似文献   

12.
Scaling factors for atomic charges derived from the RM1 semiempirical quantum mechanical wavefunction in conjunction with CM1 and CM3 charge models have been optimized by minimizing errors in absolute free energies of hydration, ΔGhyd, for a set of 40 molecules. Monte Carlo statistical mechanics simulations and free energy perturbation theory were used to annihilate the solutes in gas and in a box of TIP4P water molecules. Lennard–Jones parameters from the optimized potentials for liquid simulations‐all atom (OPLS–AA) force field were utilized for the organic compounds. Optimal charge scaling factors have been determined as 1.11 and 1.14 for the CM1R and CM3R methods, respectively, and the corresponding unsigned average errors in ΔGhyd relative to experiment were 2.05 and 1.89 kcal/mol. Computed errors in aniline and two derivatives were particularly large for RM1 and their removal from the data set lowered the overall errors to 1.61 and 1.75 kcal/mol for CM1R and CM3R. Comparisons are made to the AM1 method which yielded total errors in ΔGhyd of 1.50 and 1.64 kcal/mol for CM1A*1.14 and CM3A*1.15, respectively. This work is motivated by the need for a highly efficient yet accurate quantum mechanical (QM) method to study condensed‐phase and enzymatic chemical reactions via mixed QM and molecular mechanical (QM/MM) simulations. As an initial test, the Menshutkin reaction between NH3 and CH3Cl in water was computed using a RM1/TIP4P‐Ew/CM3R procedure and the resultant ΔG?, ΔGrxn, and geometries were in reasonable accord with other computational methods; however, some potentially serious shortcomings in RM1 are discussed. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

13.
The kinetics and equilibria in the system Br + t-BuO2H ? HBr + t-BuO2· have been measured in the range of 300–350 K using the very low pressure reactor (VLPR) technique. Using an estimated entropy change in reaction (1) ΔS1 = 3.0 ± 0.4 cal/mol·K together with the measured ΔG1, we find ΔH1 = 1.9 ± 0.2 kcal/mol and DHº (t-BuO2-H) = 89.4 ± 0.2 kcal/mol ΔHf·(tBuO2·) = 20.7 kcal/mol and DHº (t-Bu-O2) = 29.1 kcal/mol. The latter values make use of recent values of ΔHf·(t-Bu) = 8.4 ± 0.5 kcal/mol and the known thermochemistry of the other species. The activation energy E1 is found to be 3.3 ± 0.6 kcal/mol, about 1 kcal lower than the value found for Br attack on H2O2. It suggests a bond 1 kcal stronger in H2O2 than in tBuO2H.  相似文献   

14.
A variety of computational methods, including the semiempirical techniques AM1, PM3, and MNDO, and the thermochemical basis sets of Benson and Stine, was used to calculate and compare heats of formation (ΔHf°) data for optimized geometries of a variety of aromatic and nonaromatic heterocycles. Detailed analyses, including 6-31G* and MP2/6-31G* ab initio calculations, were performed for the oxazole and thiazole heterocycles. The results indicate a scatter among the methods sensitive to the nature of the heterocycle. This was in particular evident in the oxazole molecule, where AM1 gave a singularly high value of ΔHf° consistent with longer calculated bond lengths, particularly about the oxygen atom. Aromatic stabilization energy appears to be addressed differently among the employed methods. Implications of this contrast applied to calculation of macromolecular systems containing heterocyclic units are discussed.  相似文献   

15.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

16.
The rate constant of the primary decomposition step was determined for four symmetrical and four unsymmetrical azoalkanes. From the experimental activation energies and some literature enthalpy data, the following enthalpies of formation of radicals and group contributions were calculated: ΔH? (CH3N2) = 51.5 ± 1.8 kcal mol?1, ΔH? (C2H5N2) = 44.8 ± 2.5 kcal mol?1, ΔH? (2?C3H7N2) = 37.9 ± 2.2 kcal mol?1, [NA-(C)] = 27.6 ± 3.7 kcal mol?1, [NA-(?A) (C)] = 61.2 ± 3.1 kcal mol?1.  相似文献   

17.
This paper estimates some thermochemical (in kcal mol–1) and detonation parameters for the ionic liquid, [emim][ClO4] and its associated solid in view of its investigation as an energetic material. The thermochemical values estimated, employing CBS‐4M computational methodology and volume‐based thermodynamics (VBT) include: lattice energy, UPOT([emim][ClO4]) ≈? 123 ± 16 kcal · mol–1; enthalpy of formation of the gaseous cation, ΔfH°([emim]+, g) = 144.2 kcal · mol–1 and anion, ΔfH°([ClO4], g) = –66.1 kcal · mol–1; the enthalpy of formation of the solid salt, ΔfH°([emim][ClO4],s) ≈? –55 ± 16 kcal · mol–1 and for the associated ionic liquid, ΔfHo([emim][ClO4],l) = –52 ± 16 kcal · mol–1 as well as the corresponding Gibbs energy terms: ΔfG°([emim][ClO4],s) ≈? +29 ± 16 kcal · mol–1 and ΔfGo([emim][ClO4],l) = +24 ± 16 kcal · mol–1 and the associated standard absolute entropies, of the solid [emim][ClO4], S°298([emim][ClO4],s) = 83 ± 4 cal · K–1 · mol–1. The following combustion and detonation parameters are assigned to [emim][ClO4] in its (ionic) liquid form: specific impulse (Isp) = 228 s (monopropellant), detonation velocity (VoD) = 5466 m · s–1, detonation pressure (pC–J) = 99 kbar, explosion temperature (Tex) = 2842 K.  相似文献   

18.
The thermal unimolecular decomposition of three vinylethers has been studied in a VLPP apparatus. The high-pressure rate constant for the retro-ene reaction of ethylvinylether was fit by log k (sec?1) = (11.47 + 0.25) - (43.4 ± 1.0)/2.303 RT at <T> = 900 K and that of t - butylvinylether by log k (sec?1) = (12.00 ± 0.27) - (38.4 ± 1.0)/2.303 RT at <T> = 800 K. No evidence for the competition of the higher energy homolytic bond-fission process could be obtained from the experimental data. The rate constant compatible with the C? O bond scission reaction in the case of benzylvinylether was log k (sec?1) = (16.63 ± 0.30) - (53.74 ± 1.0)/2.303 RT at <T> = 750 K. Together with ΔHf,3000(benzyl·) = 47.0 kcal/mol, the activation energy for this reaction results in ΔHf,3000(CH2CHO) = +3.0 ± 2.0 kcal/mol and a corresponding resonance stabilization energy of 3.2 ± 2.0 kcal/mol for 2-ethanalyl radical.  相似文献   

19.
For the experimental determination of the equilibrium constant of the reaction CH3 + O2 ? CH3O2 (1), the process of methane oxidation has been studied over the temperature range of 706–786 K. The concentration of CH3O2 has been measured by the radical freezing method, and that of CH3 from the rate of accumulation of ethane, assuming that C2H6 is produced by the reaction CH3 + CH3 → C2H6 (2). The equilibrium constant of reaction (1) has been obtained at four temperatures. For the heat of the reaction the value Δ?H298 = -32.2 ± 1.5 kcal/mol is recommended.  相似文献   

20.
Proton decoupled 13C NMR spectra have been measured for the cyclopentadienyl compounds C5H5Si(CH3)nCl3?n(n = 1, 2, 3), C5H5Ge(CH3)3, CH3C5H4Ge(CH3)3, C5H5Sn(CH3)3, σ-C5H5Fe(CO)2-π-C5H5 and C5H5HgCH3. A fast metallotropic rearrangement occurring in the compounds causes the spectra to be temperature dependent for the Si, Ge, Sn and Fe derivatives. For the derivatives of silicon or germanium, the olefinic signals are unsymmetrically broadened by the 1,2-shift at lower migration rates. Line widths of the ring carbon signals have been measured to give an estimate for the activation parameters of the rearrangement in C5H5Ge(CH3)3 (Ea = 10·7 ± 0·9 kcal/mole, ΔG? = 13·4 ± 0·9 kcal/mole) and C5H5Sn(CH3)3 (Ea = 6·8 ± 0·7 kcal/mole, ΔG? = 7·1 ± 0·7 kcal/mole). At room temperature, the spectrum of C5H5HgCH3 displays just one narrow signal responsible for the cyclopentadienyl ligand. The spectrum of CH3C5H4Ge(CH3)3 at –30° demonstrates that two isomers containing methyl in the vinylic position are present, the ratio being ca. 2:1. The 13C spectra of the vinylic isomers have been analysed in the case of C5H5Si(CH3)nCl3?n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号