首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models with varying cosmic parameters, which were earlier regarded constant, are getting attention. However, different models are usually invoked to explain the evolution of different parameters. We argue that whatever physical process is responsible for the evolution of one parameter, should also be responsible for the evolution of others. This means that the different parameters are coupled together somehow. Based on this guiding principle, we investigate a Bianchi type I model with variable Λ and G, in which Λ, G and the shear parameter σ2, all are coupled. It is interesting that the resulting model reduces to the FLRW model for large t with G approaching a constant.  相似文献   

2.
ABSTRACT

Experimental adsorption isotherms of hydrogen in CNT samples (CNT-A, activated CNT-A CNT-B and activated CNT-B) at T?=?77, 87 and 90?K have been fitted using some theoretical model expressions treated by statistical physics through the grand canonical ensemble. The monolayer model with single energy is selected to fit and interpret the experimental data obtained with CNTs. The physico-chemical parameters, interfering in the adsorption process and implicated in the model expressions, could be directly determined from the experimental data through numerical simulation. Three parameters of the model are fitted, namely the number of hydrogen molecule per site n, the interstitial site density Nm and the energetic parameter P1/2. The evolution of these parameters as function of temperature is plotted and interpreted in relation to adsorption process. Finally, the thermo-dynamic potential functions, which involve in the adsorption mechanism like free enthalpy of Gibbs Ga, internal energy Eint and entropy Sa, are derived by statistical physics calculations from the selected model.  相似文献   

3.
高扬福  孙晓民  宋亦旭  阮聪 《物理学报》2014,63(24):248201-248201
刻蚀表面仿真是研究等离子体刻蚀工艺过程机理的重要手段.在刻蚀表面仿真方法中,刻蚀表面演化模型和离子刻蚀产额模型直接决定了刻蚀表面演化结果.但现有的刻蚀表面演化模型不够精确,且目前离子刻蚀产额模型主要来自分子动力学仿真和物理实验,而实际加工过程十分复杂,等效的离子刻蚀产额包含很多因素.针对这些问题,首先对当前的刻蚀表面演化模型进行改进,同时重新定义了离子刻蚀产额模型的优化目标,并利用实际刻蚀加工数据来优化离子刻蚀产额模型.为缩短优化模型所用时间,采用并行方法来加速优化过程.最后,将得到的离子刻蚀产额模型参数应用于采用元胞自动机法的刻蚀工艺实际仿真过程中.实验结果表明,该优化建模方法确实提高了仿真的精确度,同时优化过程所用时间也大大减少.  相似文献   

4.
Work done before on the construction of quantum mechanical Hamiltonian models of Turing machines and general discrete processes is extended here to include processes which erase their own histories. The models consist of three phases: the forward process phase in which a mapT is iterated and a history of iterations is generated, a copy phase, which is activated if and only ifT reaches a fix point, and an erase phase, which erases the iteration history, undoes the iterations ofT, and recovers the initial state except for the copy system. A ballast system is used to stop the evolution at the desired state. The general model so constructed is applied to Turing machines. The main changes are that the system undergoing the evolution corresponding toT iterations becomes three systems corresponding to the internal machine, the computation tape, and computation head. Also the copy phase becomes more complex since it is desired that this correspond also to a copying Turing machine.  相似文献   

5.
Using the three-state model and time-dependent wavepacket method, the influence of the parameters of the intense femtosecond laser field on the wavepacket dynamic process of the double-minimum potential state 51Σ+ and the population of the ground and diabatic electronic states of NaLi are investigated. The calculations show that different femtosecond laser parameters result in different influences on the evolution of the wavepacket and the population of NaLi. With increasing laser intensity and wavelength the diabatic coupling strength between A and B states first strengthens and then weakens. The population interchanges between A and B states when the laser pulse disappears. The above results provide the suggestions and useful information for one to achieve quantum manipulation of the molecule in an experiment.  相似文献   

6.
The aim of this work is to explore the consequences on the kinetics of structural relaxation of considering a glass-forming system to consist of a series of small but macroscopic relaxing regions that evolve independently from each other towards equilibrium in the glassy state. The result of this assumption is a thermorheologically complex model. In this approach each relaxing zone has been assumed to follow the Scherer-Hodge model for structural relaxation (with the small modification of taking a linear dependence of configurational heat capacity with temperature). The model thus developed contains four fitting parameters. A least-squares search routine has been used to find the set of model parameters that fit simultaneously four DSC thermograms in PVAc after different thermal histories. The computersimulated curves are compared with those obtained with Scherer-Hodge model and the model proposed by Gómez and Monleón. The evolution of the relaxation times during cooling or heating scans and also during isothermal annealing below the glass transition has been analysed. It has been shown that the relaxation times distribution narrows in the glassy state with respect to equilibrium. Isothermal annealing causes this distribution to broaden during the process to finally attain in equilibrium the shape defined at temperatures above T g .  相似文献   

7.
Large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is performed. The filtered Navier–Stokes equations with dynamic subgrid scale model are solved on unstructured grids to compute the swirling turbulent flow through complex passages of the injector. The collocated grid, incompressible flow algorithm on arbitrary shaped unstructured grids developed by Mahesh et al. (J. Comp. Phys. 197 (2004) 215–240) is used in this work. A Lagrangian point-particle formulation with a stochastic model for droplet breakup is used for the liquid phase. Following Kolmogorov’s concept of viewing solid particle-breakup as a discrete random process, the droplet breakup is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. The size and number density of the newly produced droplets is governed by the Fokker–Planck equation for the evolution of the pdf of droplet radii. The parameters of the model are obtained dynamically by relating them to the local Weber number and resolved scale turbulence properties. A hybrid particle-parcel is used to represent the large number of spray droplets. The predictive capability of the LES together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail by comparing it with the spray patternation study for the gas-turbine injector. The present approach is computationally efficient and captures the global features of the fragmentary process of liquid atomization in complex configurations.  相似文献   

8.
The evolution of a probe D-brane in the p-brane background is considered. The anisotropic evolution of the world-volume of the D-brane with a given topology of a world-volume in the form of a direct product of a n-dimensional flat space and (3 − n)-dimensional sphere is formulated. In this case the anisotropy is described with the aid of two parameters (Hubble parameters) The special case of this evolution, namely the isotropic evolution corresponds to equality of these two parameters. In the latter case the masses and charges of the background p-branes are obtained.  相似文献   

9.
10.
11.
The method used earlier for analysis of correlated nanoscopic systems is extended to infinite (periodic) s-band-like systems described by the Hubbard model. The optimized single-particle Wannier wave functions contained in the parameters of the extended Hubbard model (in the nearest-neghbor hopping (-t), in the magnitude of the intraatomic interaction U, and in other parameters) are determined explicitly in the correlated state for the electronic systems of various symmetries and dimensions: Hubbard chain, square and triangular planar lattices, and the three cubic lattices (SC, BCC, FCC). In effect, the evolution of the electronic properties as a function of interatomic distance R is obtained. The model parameters in most cases do not scale linearly with the lattice spacing and hence, their solution as a function of microscopic parameters reflects only qualitatively the system evolution. Also, the atomic energy changes with R and therefore should be included in the model analysis. The solutions in one dimension (D = 1) can be analyzed both rigorously (by making use of the Lieb–Wu solution) and compared with the approximate Gutzwiller treatments. In higher dimensions (D = 2 and 3) only the latter approach is possible to implement within the scheme. The renormalized single particle wave functions are almost independent of the choice of the scheme selected to diagonalize the Hamiltonian in the Fock space in D = 1 case. For dimensions D > 1 the qualitative behavior is independent of the structure considered. The wave-function size increases above the Mott-Hubbard localization threshold and gradually reaches the atomic limit value. The method can be extended to other approximation schemes, as stressed at the end.  相似文献   

12.
A theoretical approach to calculate the time evolution of magnetization during a CPMG pulse sequence of arbitrary parameter settings is developed and verified by experiment. The analysis reveals that off-resonance effects can cause systematic reductions in measured peak amplitudes that commonly lie in the range 5–25%, reaching 50% in unfavorable circumstances. These errors, which are finely dependent upon frequency offset and CPMG parameter settings, are subsequently transferred into erroneousT2values obtained by curve fitting, where they are reduced or amplified depending upon the magnitude of the relaxation time. Subsequent transfer to Lipari–Szabo model analysis can produce significant errors in derived motional parameters, with τeinternal correlation times being affected somewhat more thanS2order parameters. A hazard of this off-resonance phenomenon is its oscillatory nature, so that strongly affected and unaffected signals can be found at various frequencies within a CPMG spectrum. Methods for the reduction of the systematic error are discussed. Relaxation studies on biomolecules, especially at high field strengths, should take account of potential off-resonance contributions.  相似文献   

13.
Bollé  D.  Jongen  G.  Shim  G. M. 《Journal of statistical physics》1999,96(3-4):861-882
The parallel dynamics of extremely diluted symmetric Q-Ising neural networks is studied for arbitrary Q using a probabilistic approach. In spite of the extremely diluted architecture the feedback correlations arising from the symmetry prevent a closed-form solution in contrast with the extremely diluted asymmetric model. A recursive scheme is found determining the complete time evolution of the order parameters taking into account all feedback. It is based upon the evolution of the distribution of the local field, as in the fully connected model. As an illustrative example an explicit analysis is carried out for the Q=2 and Q=3 model. These results agree with and extend the partial results existing for Q=2. For Q>2 the analysis is entirely new. Finally, equilibrium fixed-point equations are derived and a capacity-gain function diagram is obtained.  相似文献   

14.
In this work, we examine in depth the physical aspects of the archaic universe described by Euclidean 5-sphere geometry, by using Projective Relativity techniques. We hypothesize that the expansion of the Universe was “ignited” by primordial R processes, and that the big bang consisted of a spatially extended nucleation process which took place at the end of a pre-cosmic phase, characterized by the evolution parameter x0\underline{x}_{0}. This parameter, which can be considered a quantum precursor of ordinary physical time, is a coordinate of Euclidean 5-sphere metrics. It is so possible to avoid many of the difficulties with standard model and to get rid of ad hoc assumptions. A complete solution to Projective General Relativity (PGR) equations is provided, so as to establish univocal relations between the scale factor R(τ) and cosmic time τ. In this way, the physics and geometry of the cosmological model are specified completely.  相似文献   

15.
Motivated by Granda and Oliveros (GO) model, we generalize their work to the non-flat case. We obtain the evolution of the dark energy density, the deceleration and the equation of state parameters for the holographic dark energy model in a non-flat universe with GO cut-off. In the limiting case of a flat universe, i.e. k=0, all results given in GO model are obtained.  相似文献   

16.
In an exactly solvable model of separable potentials a two channel scattering problem is solved in l = 0 state. The location and the width of a resonance are then defined in three different ways and the resonance parameters so extracted are then compared. This problem is of interest vis-a-vis the Δ(3, 3) resonance parameters.  相似文献   

17.
We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of √s= 130 AGeV Au + Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark-gluon plasma with large volume and low net baryon density.  相似文献   

18.
A physically reasonable interpretation is provided for the perfect fluid, spherically symmetric, conformally flat "Stephani Universes". The free parameters of this class of exact solutions are determined so that the ideal gas relation p = nk B T is identically fulfilled, while the full equation of state of a classical monatomic ideal gas and a matter-radiation mixture holds up to a good approximation in a near dust, matter dominated regime. Only the models having spacelike slices with positive curvature admit a regular evolution domain that avoids an unphysical singularity. In the matter dominated regime these models are dynamically and observationally indistinguishable from "standard" FLRW cosmology with a dust source.  相似文献   

19.
Considering the power-law corrections to the black hole entropy, which appear in dealing with the entanglement of quantum fields inside and outside the horizon, the holographic energy density is modified accordingly. In this paper we study the power-law entropy-corrected holographic dark energy in the framework of Brans-Dicke theory. We investigate the cosmological implications of this model in detail. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution. As a result we find that this model can provide the present cosmic acceleration and even the equation of state parameter of this model can cross the phantom line w D =−1 provided the model parameters are chosen suitably.  相似文献   

20.
邹文康  陈林  周良骥  王勐  杨礼兵  谢卫平  邓建军 《物理学报》2011,60(11):115204-115204
以丝阵内爆零维模型为基础,采用Pspice模拟行为建模方法,建立了丝阵内爆动态电感与Z箍缩驱动器耦合的全电路模型,实现驱动器放电过程与丝阵内爆过程的自洽求解,并研究了丝阵参数、电路参数对内爆过程的影响.结果表明:丝阵负载与驱动器存在强耦合关系,丝阵参数、电路参数对丝阵峰值箍缩电流、内爆时间、内爆动能影响很大;在驱动器参数不变,内爆时间不超过电路固有放电周期1/4的前提下,峰值箍缩电流、内爆时间、内爆动能随丝阵质量的增加而增大,内爆时间随丝阵初始半径的增加而增大;在丝阵参数不变时,随着驱动器等效电容的增大,内爆时间减小,丝阵内爆动能增大,但驱动器储能转化为内爆动能的效率却先增大后减小.对于特定的驱动器,优化的丝阵参数应使内爆过程充分利用驱动器固有放电周期的上升沿,使丝阵快速收缩的时间起点接近电路固有放电周期的四分之一,以获得最大的动能效率. 关键词: Z箍缩驱动器 零维内爆模型 模拟行为建模 耦合特性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号