首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four new macrocyclic polyaza-crown compounds containing a triazole subcyclic group and two to five lipophilic hydrocarbon substituents have been prepared from the appropriate polyamine and N-THP-protected 2,5-triazoledimethyl dichloride. N,N,N',N'-Tetrabenzyltetraazabistriazolo-18-crown-6 was prepared from N,N'-dibenzylethylenediamine and N-THP-protected 2,5-triazoledimethyl dichloride. Biscyclohexano-bispyridono-18-crown-6 was prepared from trans- 1,2-cyclohexanediol and THP-protected 4-hydroxy-2,6-pyridinedimethyl ditosylate.  相似文献   

2.
Seven new cryptands 3–9 containing two or three aromatic rings in one bridge were prepared in good yields by treating N,N'-bis(p-chlorophenol)-substituted diaza-18-crown-6 ( 2 ) with three oligoethylene glycol ditosylates, 1,3-propanediol ditosylate, 2,6-pyridinedimethanol ditosylate, α,α'-dibromo-o-xylene and α,α'-dibromo-p-xylene. Because of the convenient synthesis of 2 from N,N'-bis(methoxymethyl)diaza-18-crown-6 ( 1 ) and the relative ease of isolation of the cryptand products, this is an excellent method for the design of three-dimensional cavities containing aromatic fragments. In an attempt to better understand the synthetic route to the cryptands, the crystal structures of KI·2 and Na Picrate·2 were determined using X-ray analysis. In addition, crystal structure analyses of cryptands 3, 6 and 8 were used to establish their structures.  相似文献   

3.
4,10-Diaza-15-crown-5, 4,10-diaza-18-crown-6, 4,13-diaza-21-crown-7, and 4,16-diaza-24-crown-8 were prepared by an improved method from the appropriate oligothylene glycol diiodides and diamines. The thermodynamic values of log K, ΔH and ΔS for the interaction of 4,10-diaza-18-crown-6 with Pb2+ and Ag+ were determined by a calorimetric titration method and compared with thermodynamic values for interactions of 4,13-diaza-18-crown-6 with the same cations. The thermodynamic values were found to be different for the two diaza-crown ligands. 4,10-Diaza-18-crown-6 and its 4,13-diaza-crown analog formed precipitates when treated with Co2+, Cd2+, Cu2+, and Ni2+ so that no thermodynamic data are reported for these interactions.  相似文献   

4.
The complexation reaction of phenylaza-15-crown-5, and 4-nitrobenzo-15-crown-5, benzo-15-crown-5 and dibenzopyrdino-18-crwon-6, dibenzo-18-crown-6,dicyclohexyl-18-crown-6(cis and trans), and 18-crown-6 with Na+ ion in methanol have been studied by potentiometric method. The Na+ ion-selective electrode has been used both as indicator and reference electrode. The stoichiometry and stability constants of complexes of these crown ethers with sodium ion were evaluated by MINIQUAD program. The major trend of stability of resulting complexes of these macrocycle with Na+ ion varied in the order DCY18C6 > DB18C6 > 18C6 > DBPY18C6 > phenylaza-15C5 > benzo-15C5 > 4-nitrobenzo-15C5. The obtained results in particular stability constant of complexes of DBPY18C6, phenylaza-15C5 and 4-nitrobenzo-15C5 with sodium ion in comparison with other crowns ether are novel, and interesting.  相似文献   

5.
Six new diaza-18-crown-6 ligands each containing two aromatic side arms with responsive functions were prepared. Diaza-18-crown-6 containing two 4-hydroxyazobenzene ( 3 ) or two 4 -hydroxy- 4′ -(dimethyl-amino)azobenzene ( 4 ) substituents were prepared via a one-pot Mannich reaction. Diaza-18-crown-6 containing two benzimidazole ( 5 ), two uracil ( 6 ) or two 9,10-anthraquinone ( 7 ) substituents were prepared by treating the diazacrown with the appropriate chloromethyl-containing compound. Reductive amination using sodium triacetoxyborohydride, diaza-18-crown-6 and ferrocenecarboxaldehyde was used to prepare bisferrocene-substituted diaza-18-crown-6 ( 8 ). Interactions of compounds 3 , 5 , and 6 with Na+, K+, Ba2+, Ag+, and Cu2+ were evaluated by a calorimetric titration technique at 25° in methanol. All three ligands form more stable complexes with Ag+ and Cu2+ ( 5 forms a precipitate with Ag+) than with Na+ and K+. Ligand 5 also forms a highly stable complex with Ba2+.  相似文献   

6.
Diazonium salts were prepared by diazotization of 4′-amino-, 4′,4″-, and 4′,5″-diaminodibenzo-18-crown-6. Their coupling products with kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone) were synthesized for the first time: 4′-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-, 4′,4″-di-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-, and 4′,5″-di-(6-aza-5-hydroxy-2-hydroxymethyl-γ-pyronyl)-dibenzo-18-crown-6. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 415–416, September–October, 2006.  相似文献   

7.
Uracil-5-yl isocyanate and 1,3-dimethyluracil-5-yl isocyanate were prepared from the corresponding new carboazides. 1,3-Dimethyluracil-5-ylmethyl isocyanate obtained from the chloro compound and silver cyanate, was polymerized with an anionic initiator to the cyclic trimer. Attempts to isolate uracil-6-yl isocyanate, 1,3-dimethyluracil-6-yl isocyanate, pyrimidinyl-4-isocyanate, and 2,6-dichloropyrimidinyl-4-isocyanate were unsuccessful. Ethyl carbamate derivatives were made from all new azides and isocyanates. Other new pyrimidine derivatives included N,N'-bis(pyrimidine-4-carbonyl)hydrazine, N,N'-bis(1,3-dimethyluracil-5-yl)urea, N,N'-bis(1,3-dimethyluracil-6-yl)urea and N,N'-bis(2,5,6-trichloro-4-pyrimidinyl)oxamide.  相似文献   

8.
A general method for the synthesis of the title compounds 5, 6, 10, 14, 15 and 16 is reported. All of them were prepared in one step from readily available dimethyl N,N'-(arylene)bisdithiocarbamates 1 and red mercury(II) oxide. The superiority of these reagents over the corresponding diisothiocyanates 7 and the synthetic utility of tetramethyl N,N'-(arylene)bisdithiocarbonimidates 2 are also discussed.  相似文献   

9.
N'-[4'-benzo(15-crown-5)]-4-tolylaminoglyoxime (H2L1),the sodium chloride salt of H2L1 (H2L1...NaCl),N'-[4'-benzo(15-crown-5)]-4-chlorophenylaminoglyoxime(H2L2) and the sodium chloride salt of H2L2 (H2L2...NaCl)have been prepared from p-chlorophenylchloroglyoxime,p-tolylchloroglyoxime, 4'-aminobenzo[15-crown-5] and sodiumbicarbonate or sodium bicarbonate and sodium chloride. Nickel (II),cobalt (II) and copper (II) complexes of H2L and H2L...NaClhave a metal-ligand ratio of 1 : 2 and the ligand coordinatesthrough the two N atoms, as do most of the vic-dioximes. Their IR spectra and elemental analyses are given, together with1H NMR spectra of the ligands.  相似文献   

10.
The synthesis of two N-(2-allyloxy)ethyl-substituted diaza-crowns and two C-pivot (allyloxy)methyl-substi-tuted cryptands is described. Controlled etherization of N,N-bis(2-hydroxyethyl)-4,13-diaza-18-crown-6 with allyl bromide and sodium hydride gave N-(2-allyloxy)ethyl-N-(2-hydroxyethyl)-4,13-diaza-18-crown-6 in a good yield. This macrocycle was reacted with sodium hydride and tetrahydrofurfuryl chloride or 3,3-dimeth-ylbutyl tosylate to give expected N-(2-allyloxy)ethyl-N'-tetrahydrofurfuryloxy)ethyl-[or (3,3-dimethylbutoxy)-ethyl]-substituted products 3 or 4 . 6,13-Dimethylenyl-14-crown-4 ( 9 ) and 9,19-dimethylenyl-20-crown-6 ( 10 ) were treated with mercuric acetate, followed by sodium borohydride in strong base to give macrocyclic diols 11 and 12 , respectively. These diols were reacted with sodium hydride and the ditosylate derivative of allyloxymethyl-substituted triethyleneglycol 13 to produce the C-pivot (allyloxy)methyl-substituted macrotri-cycles 6 and 7 .  相似文献   

11.
Optically active diphenyl-substituted tetraaza-12-crown-4 diamide ( 10 ), tetraaza-15-crown-5 diamide ( 12 ), tetraaza-18-crown-6 diamide ( 11 ), and hexaaza-18-crown-6 diamide ( 9 ) ligands were prepared by treating the appropriate secondary diamines with the (R,R)- and (S,S)- forms of 1,2-bis(N-methyl-α-chloracetamido)-1,2-diphenylethane ( 20 ). Macrocyclic diamides 9 and 10 were reduced to form the optically active diphenyl-substituted hexaaza-18-crown-6 ( 13 ) and tetraaza-12-crown-4 ( 14 ), respectively. Reduction of macrocyclic diamide ligands 11 and 12 gave a complex mixture of products from which the desired tetraaza-15-crown-5 and 18-crown-6 compounds could not be isolated. Dichloride 20 was prepared by treating the chiral forms of 1,2- diphenylethylenediamine with chloroacetic anhydride or chloroacetyl chloride. The crystal structures for the (R,R)-form of dichloride 20 and the (S,S)-forms of macrocycles 10 and 11 are reported.  相似文献   

12.
Crown ethers are preferential solvated by organic solvents in the mixtures of water with formamide, N-methylformamide, acetonitrile, acetone and propan-1-ol. In these mixed solvents the energetic effect of the preferential solvation depends quantitatively on the structural and energetic properties of mixtures. The energetic properties of the mixtures of water with hydrophobic solvents (N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphortriamide) counteract the preferential solvation of the crown ether molecules. The effect of the hydrophobic and acid-base properties of the mixture of water with organic solvent on the solvation of 12-crown-4, 15-crown-5, 18-crown-6 and benzo-15-crown-5 ethers was discussed. The solvation enthalpy of one -CH2CH2O- group in water, N,N-dimethylformamide and hexamethylphosphortriamide is equal to −24.21, −16.04 and −15.91 kJ/mol, respectively. The condensed benzene ring with 15-crown-5 ether molecule brings about an increase in the exothermic effect of solvation of the crown ether in the mixtures of water with organic solvent.  相似文献   

13.
Reactions of 4"-iodobenzo-15-crown-5 ether with ethynylarenes or 4"-ethynylbenzo-15-crown-5 ether with haloarenes in the presence of catalytic amounts of PdIIcomplex salts, CuI, and Et3N gave 4"-(arylethynyl)benzo-15-crown-5 ethers in 55—80% yields.  相似文献   

14.
A new complex compound, [K2(18-crown-6)2[K(18-crown-6)(EtOH)]2[Er(NCS)6](SCN) (I), was synthesized and its crystal structure was studied by X-ray diffraction. In this work, the synthes and X-ray difraction stady of the crystals of a new complex, hexakis (isothiocyanato) erbiu(III) thiocyanate bis(18-crown-6) dipotassium bis(18-crown-6) ethanolpotassium], [K2(18-crown-6)2][K(18-crown-6)(ETON)]2[Er(NCS)6(SCN)(I)] are described. In crystal I, the alternating [Er(NCS)6]3? anions and binuclear complex cation [K(18-crown-6)2]2+ from infinite chains via the F-S bonds, while two complex cations [K(18-crown-6)(ETON)]+ and the statistically disordered SCN? anion between them are linked by the hydragen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2)]2+ and [K(18-crown-6)(ETON)]+ [1]. The alternating octabedral [Er(NCS)6]3? anions and binuclear complex cations [K2(18-crown-6)2]2+of crystal I form infinite chains via the K-S bonds, while two complex cations [K(18-crown-6)(EtOH)]+ and the statistically disordered SCN? anion lying between them are linked by interionic hydrogen bonds O-H…S and O-H…N. Complex I contains the host-guest complex cations [K2(18-crown-6)2]2+ and [K(18-crown-6)(EtOH)]+ [1].  相似文献   

15.
The title compounds were prepared by treating a methanol solution of the corresponding crown ether with an aqueous solution of aminosulfuric acid.Crystals of [benzo-18-crown-6·H2NSO2OH] suitable for X-ray crystallography were obtained by recrystallization from methanol. The crystals are orthorhombic, space groupP212121,a = 14.310(7),b = 12.516(4),c = 10.890(4) Å. Refinement led to a final conventionalR value of 0.051 for 909 reflections.Crystals of [18-crown-6·H2NSO2OH] suitable for X-ray crystallography were obtained by recrystallization from acetone. They are orthorhombic, space groupP212121,a = 17.027(6),b = 14.866(5),c = 8.345(4) Å. The structure was solved by a heavy atom method and refined to an agreement value of 0.067.  相似文献   

16.
The dibenzo-18-crown-6 derivatives such as di(nitrobenzo)-18-crown-6 and di(aminobenzo)-18-crown-6 were synthesized by nitration reaction and catalytic hydrogenation with high selectivity. The chemical structures were determined by FTIR, 1H NMR, 13C NMR, and UV. Regarding the mixture of Ac2O and HNO3 as nitrating agent, the reaction exhibited commendable trans-isomer selectivity. Effects of nitrating agent ratio, reaction temperature and reaction time on yield of trans-di(nitrobenzo)-18-crown-6 were investigated. The yield of trans-di(nitrobenzo)-18-crown-6 was 62.9% for nitrating agent ratio of 1/1, reaction temperature of 50?°C and reaction time of 5?h. Moreover, effect of reaction time on trans-di(aminobenzo)-18-crown-6 was also studied.  相似文献   

17.

Abstract  

The stability constant of the dibenzo-18-crown-6·H3O+ cationic complex species dissolved in nitrobenzene saturated with water has been determined from extraction experiments in the two-phase water–nitrobenzene system and from γ-activity measurements. Various structures of protonated dibenzo-18-crown-6 are discussed.  相似文献   

18.
A new complex compound, bis[(18-crown-6)oxonium]tetrabromomanganese(II), 2[(H3O)+(18-crown-6)]·[MnBr4]2–, was prepared and studied by X-ray diffraction to reveal its unusual cubic crystal structure, space group Fd $ \bar 3 A new complex compound, bis[(18-crown-6)oxonium]tetrabromomanganese(II), 2[(H3O)+(18-crown-6)]·[MnBr4]2–, was prepared and studied by X-ray diffraction to reveal its unusual cubic crystal structure, space group Fd, a 20.424 ?, and Z 8. In this crystal structure, the complex cation [(H3O)+(18-crown-6)] the point symmetry position and the anion [MnBr4]2− with the point symmetry 23. The complex cation [(H3O)+(18-crown-6)] has a guest-host structure, and, unlike metal complexes by hydrogen bonds between H3O+ hydrogens and 18-crown-6 oxygens, rather than by coordination bonds. The pyramidal cation H3O+ in this crystal structure is statistically disordered, and the tetrahedral anion [MnBr4]2− is reorientationally disordered. Original Russian Text ? A.N. Chekhlov, 2008, published in Zhurnal Obshchei Khimii, 2008, vol. 78, No. 10, pp. 1622–1626.  相似文献   

19.
New derivatives of dibenzo-18-crown-6 were prepared by condensing 4,4(5)-dibenzo-18-crown-6-dicarboxylic acid dichloride with salsolidine and salsoline. The structures of these compounds were proved by PMR and IR spectral methods.  相似文献   

20.
Four new chiral macrocyclic polyether ligands containing the proton-ionizable triazole subcyclic unit have been prepared. The triazolo-crowns contain two isopropyl, two isobutyl, two (S)-sec-butyl or two benzyl substituents on chiral macro ring carbon atoms. A racemic triazolo-18-crown-6 containing two (1-naphthoxy)methyl substituents was also prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号