首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical ionization of two 1,4-dihydropyridines, lacidipine and its Z-isomer, and their corresponding pyridines in three different reagent gases and the collision-induced dissociation (CID) of their respective mass-selected protonated molecular ions in the collision energy range 10–200 eV were performed on a multiple quadrupole instrument. The weakness of the Breasted acid NH4+ as a protonating agent is clearly manifested in one of the ammonia positive-ion chemical ionization (CI+) mass spectra which displays the addition ion, [M + NH4]+, as the favoured reaction channel. The stereochemistry of the precursor molecules, the exothermicity of the protonation process and the threshold of certain dissociation channels as a function of the collision energy are among the arguments invoked to explain some of the observed differences between the CI+ mass spectra and the CID data of the different isomers investigated. In an attempt to present a more comprehensive study, some high-performance liquid chromatographic retention times and resolutions are also given.  相似文献   

2.
The collision-induced decomposition (CID) mass spectra of the protonated and cationized molecules of a number of carbohydrate antibiotics of RMM ranging from 700 to 1500 were studied by means of a four-sector mass spectrometer with a floated collision cell. Helium and argon were used as collision gases. This work illustrates that cationized rather than protonated carbohydrate antibiotics give an increased yield of high-mass ions of diagnostic value. Further, when helium is replaced by argon as collision gas, differences in the CID spectra of MH+ ions become apparent only for molecules of RMM > 1400 whereas for [M + Na]+ ions differences are observed for molecules of RMM as low as 1000. These results have been attributed to the deposition of more internal energy in the precursor ion when argon is used, resulting in increased fragmentation.  相似文献   

3.
High resolution and metastable decomposition spectra of the ions [M + NH4]+ (and [M + ND4]+) formed by reaction of [NH4]+ (and [ND4]+) with cyclohexanone have been measured. The results provide evidence that the m/z 98 ion, which is abundant in the chemical ionization (NH3) spectrum of cyclohexanone, is in fact composed of two isobaric ions: a protonated imine ion and the molecular ion of cyclohexanone. The former is formed by a mechanism analogous to that occurring in solution.  相似文献   

4.
Per-O-acetylated methyl glycosides of D -xylan-type di- and trisaccharides were studied by mass-analysed ion kinetic energy (MIKE) and collisionally induced dissociation (CID) mass Spectrometry using protonated ammonia and methylamine, respectively, as reaction gases in chemical ionization (CI). The oligosaccharides form abundant cluster ions, [M + NH4]+ or [M + CH3NH3]+, and the main fragmentation of these ions in the MIKE and CID spectra is the cleavage of interglycosidic linkages. Thus, CI (NH3) or CI (CH3NH2) spectra in combination with the MIKE or CID spectra allow the molecular masses, the masses of monosaccharide units and the branching point in oligosaccharides to be established. In the case of disaccharides, it is possible to distinguish the (1 → 2) linkage from the other types of linkages.  相似文献   

5.
Under ammonia chemical ionization (CI) conditions triarylpropenones undergo hydrogen radical-induced olefinic bond reduction on metal surfaces, resulting in [M + 2H + NH4]+ ions corresponding to the ammonium adduct of the saturated ketone. The decomposition of the adduct ions, [MNH4]+ and [M + 2H + NH4]+, was studied by collision-induced dissociation mass-analysed ion kinetic energy (CID-MIKE) spectroscopy in a reverse geometry instrument. From the CID-MIKE spectra of the [MNH4]+, [M + 2H + NH4]+, [MND4]+ and [M + 2D + ND4]+ ions it is clear that the fragmentation of the adduct ions involves loss of NH3 followed by various cyclization reactions resulting in stable condensed ring systems. Elimination of ArH and ArCHO subsequent to the loss of NH3 and formation of aroyl ion are characteristic decomposition pathways of the [MNH4]+ ions, whereas elimination of ArCH3 and formation of [ArCH2]+ are characteristic of the [M + 2H + NH4]+ ions of these propenones.  相似文献   

6.
2,3‐Dimethyl‐2,3‐dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour‐phase detection systems. In this study, the formation and detection of gas‐phase [M+H]+, [M+Li]+, [M+NH4]+ and [M+Na]+ adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The [M+H]+ ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50°C. In contrast, the [M+Na]+ ion demonstrated increasing ion abundance at source temperatures up to 105°C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision‐induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source‐formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the [M+Na]+ adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright © 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

7.
The mass spectra of 30 sulfinamide derivatives (RSONHR', R' alkyl or p-XC6H4) are reported. Most of the spectra had peaks attributable to thermal decomposition products. For some compounds these were identified by pyrolysis under similar conditions to be: RSO2NHR', RSO2SR, RSSR and NH2R' (in all kinds of sulfinyl amides); RSNHR' (in the case of arylsulfinyl arylamides); RSO2C6H4NH2, RSOC6H4NH2 and RSC6H4NH2 (in the case of arylsulfinyl arylamides of the type of X = H) The mass spectra of the three thermally stable compounds showed that there are several kinds of common fragment ions. The mass spectra of the thermally labile compounds had two groups of ions; (i) characteristic fragment ions of the intact molecules and (ii) the molecular ions of the thermal decomposition products. It was concluded that the sulfinamides give the following ions after electron impact: [M]+, [M ? R]+, [M ? R + H]+, [M ? SO]+, [RS]+, [NHR']+, [NHR' + H]+, [RSO]+, [RSO + H]+, [R]+, [R + H]+, [R']+ and [M ? OH]+, and that the thermal decomposition products give the following ions: [RSO2SR]+, [RSSR]+, [M ? O]+, [M + O]+ and [RSOC6H4NH2]+.  相似文献   

8.
The gas-phase ion chemistry of protonated O,O-diethyl O-aryl phosphorothionates was studied with tandem mass spectrometric and ab initio theoretical methods. Collision-activated dissociation (CAD) experiments were performed for the [M+H]+ ions on a triple quadrupole mass spectrometer. Various amounts of internal energy were deposited into the ions upon CAD by variation of the collision energy and collision gas pressure. In addition to isobutane, deuterated isobutane C4D10 also was used as reagent gas in chemical ionization. The daughter ions [M+H?C2H4]+ and [M+H?2C2H4]+ dominate the CAD spectra. These fragments arise via various pathways, each of which involves γ-proton migration. Formation of the terminal ions [M+H?2C2H4?H2O]+, [M+H?2C2H4?H2S]+, [ZPhOH2]+, [ZPhSH2]+, and [ZPhS]+ [Z = substituent(s) on the benzene ring] suggests that (1) the fragmenting [M+H]+ ions of O,O-diethyl O-aryl phosphorothionates have protons attached on the oxygen of an ethoxy group and on the oxygen of the phenoxy group; (2) thiono-thiolo rearrangement by aryl migration to sulfur occurs; (3) the fragmenting rear-ranged [M+H]+ ions have protons attached on the oxygen of an ethoxy group and on the sulfur of the thiophenoxy group. To get additional support for our interpretation of the mass spectrometric results, some characteristics of three protomers of O,O-diethyl O-phenyl phosphorothionate were investigated by carrying out ab initio molecular orbital calculations at the RHF/3–21G* level of theory.  相似文献   

9.
Metastable ion and collisionally-activated dissociation spectra of several cluster ions of the type [Csn+1In]+, formed by fast atom bombardment mass spectrometry (FABMS) of CsI, have been studied: It is found that particular cluster ions are more stable than others. Less stable ions undergo more unimolecular dissociation and have larger cross-sections for collisional dissociation than do the more stable ions, and this leads to unexpected anomalies in the FAB mass spectrum of CsI. The collision spectrum of [Cs35I34]+ (m/z 8966) has been acquired at an accelerating potential of 10 kV; the extent of both unimolecular and collisionally-activated dissociation of this ion is remarkably high and leads to collision/ transmission efficiencies of 85% for our tandem mass spectrometer. Clusters formed by FAB of an equimolar mixture of CsI and KI have also been studied by their collisionally-activated dissociation (CAD) and metastable ion (MI) spectra.  相似文献   

10.
A series of novel pyranocoumarin derivatives were analysed by electron impact mass spectrometry and tandem mass spectrometry at low aud high collision energy. The collision-induced decomposition tandem mass spectra of the [M ? CH3]+ ions yielded several structurally valuable fragments and those of the [M ? CH3]2+ ions allowed some charge-separation reactions to be recognized.  相似文献   

11.
The charge reversal collision induced decomposition mass analyzed ion kinetic energy spectrum of allyl anion has been compared with the collision induced dissociation mass analyzed ion kinetic energy spectrum of allyl cation and found to be identical except for the presence of +2 ions formed by charge stripping in the spectrum of the [C3H5]+ ion. Likewise, the collision induced dissociation mass analyzed ion kinetic energy charge reversal spectrum of [CH3Se]? has been compared with the collision induced dissociation mass analyzed ion kinetic energy spectrum of [CH3Se]+ and found to be identical. A study of the pressure dependence of the collision induced dissociation mass analyzed ion kinetic energy spectrum of [C3H5]+ and [C3H5]? showed increasing fragmentation with increasing collision gas pressure, and suggests that a greater mean number of collisions converts more energy to internal modes in the collision induced dissociation mass analyzed ion kinetic energy experiment even at low pressures.  相似文献   

12.
The collision-induced dissociation (CID) mass spectra of protonated cocaine and protonated heroin have been measured using a triple quadrupole mass spectrometer at 50 eV ion/neutral collision energy for protonated molecules prepared by different protonating agents. The CID mass spectra of protonated cocaine using H+(H2O)n, H+(NH3)n and H+((CH3)2NH)n as protonating agents are essentially identical and it is concluded that, regardless of the initial site of protonation, the fragmentation reactions occurring on collisional activation are identical. By contrast, protonated heorin prepared with H+(H2O)n and H+(NH3)n as protonating agents show substantial differences. That formed by reaction of H+(H2O)n shows a much more abundant peak corresponding to loss of CH3CO2H. From a comparison with model compounds, and from a consideration of the three-dimensional structure of heroin, it is concluded that with H+(H2O)n as protonating agent significant protonation occurs at the acetate group attached to the alicyclic ring, leading to acetic acid loss on collisional activation, but that reaction of H+(NH3)n leads to protonation at the nitrogen function. The proton attached to nitrogen cannot interact with the acetate group and, consequently, the probability of loss of acetic acid on collislional activation is greatly reduced.  相似文献   

13.
The electrospray ionization collisionally activated dissociation (CAD) mass spectra of protonated 2,4,6‐tris(benzylamino)‐1,3,5‐triazine (1) and 2,4,6‐tris(benzyloxy)‐1,3,5‐triazine (6) show abundant product ion of m/z 181 (C14H13+). The likely structure for C14H13+ is α‐[2‐methylphenyl]benzyl cation, indicating that one of the benzyl groups must migrate to another prior to dissociation of the protonated molecule. The collision energy is high for the ‘N’ analog (1) but low for the ‘O’ analog (6) indicating that the fragmentation processes of 1 requires high energy. The other major fragmentations are [M + H‐toluene]+ and [M + H‐benzene]+ for compounds 1 and 6, respectively. The protonated 2,4,6‐tris(4‐methylbenzylamino)‐1,3,5‐triazine (4) exhibits competitive eliminations of p‐xylene and 3,6‐dimethylenecyclohexa‐1,4‐diene. Moreover, protonated 2,4,6‐tris(1‐phenylethylamino)‐1,3,5‐triazine (5) dissociates via three successive losses of styrene. Density functional theory (DFT) calculations indicate that an ion/neutral complex (INC) between benzyl cation and the rest of the molecule is unstable, but the protonated molecules of 1 and 6 rearrange to an intermediate by the migration of a benzyl group to the ring ‘N’. Subsequent shift of a second benzyl group generates an INC for the protonated molecule of 1 and its product ions can be explained from this intermediate. The shift of a second benzyl group to the ring carbon of the first benzyl group followed by an H‐shift from ring carbon to ‘O’ generates the key intermediate for the formation of the ion of m/z 181 from the protonated molecule of 6. The proposed mechanisms are supported by high resolution mass spectrometry data, deuterium‐labeling and CAD experiments combined with DFT calculations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The implementation of surface-induced dissociation (SID) to study the fast dissociation kinetics (sub-microsecond dissociation) of peptides in a MALDI TOF instrument has been reported previously. Silicon nanoparticle assisted laser desorption/ionization (SPALDI) now allows the study of small molecule dissociation kinetics for ions formed with low initial source internal energy and without MALDI matrix interference. The dissociation kinetics of N(CH3)4+ and N(CD3)4+ were chosen for investigation because the dissociation mechanisms of N(CH3)4+ have been studied extensively, providing well-characterized systems to investigate by collision with a surface. With changes in laboratory collision energy, changes in fragmentation timescale and dominant fragment ions were observed, verifying that these ions dissociate via unimolecular decay. At lower collision energies, methyl radical (CH3) loss with a sub-microsecond dissociation rate is dominant, but consecutive H loss after CH3 loss becomes dominant at higher collision energies. These observations are consistent with the known dissociation pathways. The dissociation rate of CH3 loss from N(CH3)4+ formed by SPALDI and dissociated by an SID lab collision energy of 15 eV corresponds to log k = 8.1, a value achieved by laser desorption ionization (LDI) and SID at 5 eV. The results obtained with SPALDI SID and LDI SID confirm that (1) the dissociation follows unimolecular decay as predicted by RRKM calculations; (2) the SPALDI process deposits less initial energy than LDI, which has advantages for kinetics studies; and (3) fluorinated self-assembled monolayers convert about 18% of laboratory collision energy into internal energy. SID TOF experiments combined with SPALDI and peak shape analysis enable the measurement of dissociation rates for fast dissociation of small molecules.  相似文献   

15.
The product ion mass spectra of protonated and cationated peptides of relative molecular mass (RMM) 555–574 Da have been obtained by surface-induced dissociation of MH+ and [M + Cat] ions in a four-sector tandem mass spectrometer equipped with a specially designed collision cell. A linked scan of the electric and magnetic sector field strengths of the second mass spectrometer was used to transmit the fragment ions arising from collisions with a stainless steel surface. The resulting mass spectra contained broad metastable ion peaks produced by the dissociation of MH+ and [M + Cat]+ ions before the second magnetic sector, in the fourth field-free region of the instrument.  相似文献   

16.
Low energy collision induced dissociation (CID) spectra were measured by a triple stage quadrupole mass spectrometer for the [MH]+ ions of diethyl and dimethyl esters of maleic, fumaric, citraconic and mesaconic acids. A very high degree of stereospecificity was observed for the geometrically isomeric diethyl esters. The cis esters give rise to very abundant [MH? EtOH]+ and [MH? EtOH? C2H4]+ ions, while the trans isomers exhibit very abundant [MH? C2H4]+ and [MH? 2 C2H4]+ ions. The highly stereospecific processes indicate that the double bond configuration is retained in the protonated species under the conditions of the experiment.  相似文献   

17.
The ammonia chemical ionization (CI/[NH4+]) mass spectra of a series of diastereomeric methyl and benzyl ethers derived from 3-hydroxy steroids (unsaturated in position 5 and saturated) have been studied. The adduct ions [M+NH4]+ and [MH]+ and the substitution product ions [M+NH4? ROH]+ (thereafter called [MsH]+) are characterized by an inversion in their relative stabilites in relation to their initial configuration. [M+NH4]α+ and [MH]α+ formed from the α-Δ5-steroid isomers are stabilized by the presence of a hydrogen bond which is not possible for the β-isomers. This stereochemical effect has also been observed in the mass analysed ion kinetic energy (MIKE) spectra of [M+NH4]+ and [MH]+. The MIKE spectra of [MsH]+ indicate that those issued from the β-isomers are more stable than the one originating from the α-isomers. This behavior is also observed in the first field free region (HV scan spectra) for [MH]+, [MsH]+ and [M+NH4]+ which are precursors of the ethylenic carbocations (base peak in the conventional CI/[NH4]+ spectra). Mechanisms, such as SN1 and SNi, have been ruled out for the formation of [MsH]+, but instead the data support an SN2 mechanism during the ion-molecule reaction between [M+NH4]+ and NH3.  相似文献   

18.
Chemical ionization mass spectra have been recorded for the title compounds having the four pentose configurations and the eight hexose configurations, with ammonia and isobutane as the reagent gases. The ammonia mediated spectra display [NH4]+ capture ions with successive loss of one or two molecules of methanol (acetals) or ethanethiol (dithioacetals), whereas when isobutane was the reagent gas, loss from the protonated acetals of one or two molecules of methanol and of water, and loss from the protonated dithioacetals of one or two molecules of ethanethiol and of water were featured. Significant differences in the ion intensities as a function of stereochemistry in the precursor are noted, and are discussed in terms of the ease of formation of cyclic fragment ions.  相似文献   

19.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

20.
The mechanism of elimination of ROH (R = H or CH3) from the ammonium adduct ion, [M+NH4]+, of 1-adamantanol and its methyl ether is examined by using linked-scan metastable ion spectra and by measuring the dependence of the peak intensity ratio [M+NH4]+/[M+NH4? ROH]+ on ammonia pressure. For 1-adamantanol both SNi and SN1 reactions are suggested in metastable ion decomposition, while only the SN1 mechanism is operative in the ion source. For 1-adamantanol methyl ether the SN1 reaction predominates both in metastable ion decomposition and in the ion source reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号