首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
In this article we shall look a bit more closely at some of the fundamental plasma parameters obtained by a cylindrical Langmuir probe within low-pressure electrical gas discharge plasma. The presented measurements were made in argon and in helium glow discharge plasmas. We are mainly concerned with the densities of the charged particles (electrons and ions) within the plasma and the effect of the discharge conditions upon them. The electron density is calculated from the electron current at the space potential and from the integration over the EEDF. The ion density is calculated by using the OML collisionless theory. The parameterization of Laframboise's numerical results is also used for the ion density calculation. In the range of our experimental conditions the results of plasma density, for both gases, tend to show that the ion densities measured with the OML and Laframboise theories exceeds the measured electron densities. The results also show that the plasma electron and ion densities increased with both discharge power and gas pressure.  相似文献   

2.
This article presents measurements by a cylindrical Langmuir probe in the plasma of a DC cylindrical magnetron discharge át the pressure 1.5 Pa that aim at the experimental assessment of the influence of a weak magnetic field to the estimation of the electron density when using conventional methods of probe data interpretation. The probe data was obtained under the presence of a weak magnetic field in the range 1.10?2?5.10?2 T. The influence of the magnetic field on the electron probe current is experimentally assessed for two cylindrical probes with different radii, 50 μm and 21 μm. This assessment is based on comparison of the values of the electron density estimated from the electron current part with the values of the positive ion density estimated from the positive ion current part of the probe characteristic respectively by assuming that at the magnetic field strengths used in the present study the probe positive ion currents are possible to be assumed as uninfluenced by the magnetic field. For interpretation of the probe positive ion current two theories are used and compared to each other: the radial motion model by Allen, Boyd and Reynolds [10] and Chen [11] and the model that accounts for the collisions of positive ions with neutrals in the probe space charge sheath that we call Chen-Talbot model [8]. At lower magnetic field 3 · 10?2 T the positive ion density values interpreted by using the Chen-Talbot model [8] are in better agreement with the values of electron density compared to those obtained by using the theory [10,11]; therefore the model [8] is used for calculation of the positive ion density from the probe data at higher magnetic fields. The comparison of the positive ion and electron density values calculated from the same probe data at higher magnetic fields shows that up to the magnetic field strength 4 . 10?2 T with the probe 100 μm and up to 5 . 10?2 T with the probe 42 μm in diameter respectively the decrease of the magnitude of the electron current at the space potential due to the magnetic field does not exceed the error limits that are usual for Langmuir probe measurements (absolute error ±20%).  相似文献   

3.
Experimental study of planar Langmuir probe characteristics in a magnetized plasma with an electron current along the direction of the magnetic field shows that the usual procedure for determination of the electron temperature and plasma density, which is applicable in a current-free magnetized plasma, gives erroneous results for these plasma parameters. When this procedure is applied on the characteristics measured at two opposite orientations of the probe collecting surface with respect to the direction of the electron drift, different values of the electron temperature are obtained. These virtual electron temperatures and corresponding plasma densities calculated from the measured ion saturation currents are higher and/or smaller than the exact local electron temperature and plasma density. Calculation of particular averages of these quantities is proposed as a possible way to obtain correct results for the local electron temperature and plasma density. These averages are used in the approximate evaluation of the electron drift velocity from the electron saturation currents measured at the two orientations of the probe collecting surface.  相似文献   

4.
A model is presented of the positive column of a dc glow discharge in argon with small admixtures of hexamethyldisiloxane (HMDS). The axial electric field, the ion production rates for direct-, stepwise-, pair-, and Penning ionization, the densities of metastable Ar atoms and of electrons, and the wall current of HMDS ions are calculated in dependence on HMDS admixture and discharge current density. For the calculations particle balance equations were used for a diffusion determined plasma in a mixture of two gaseous components. The reaction rates for the electron collision processes were determined applying the electron distribution function calculated for pure argon. Taking into account PENNING ionization of HMDS molecules by metastable argon atoms the decrease of electric field for increasing HMDS admixtures is according to the experimen-tally measured values. Also ion wall currents and electron densities are compared with experimen-tal values for thin film formation rate and results of probe measurements.  相似文献   

5.
A compact electron cyclotron resonance plasma source has been developed for molecular beaut epitaxy equipment. Faraday cup and Langmuir probe were used to measure the ion current densities, electron temperatures, ion densities, and plasma potentials. The ion current densities as function of pressure and microwave power have been studied.  相似文献   

6.
A compact electron cyclotron resonance plasma source has been developed for molecular beaut epitaxy equipment. Faraday cup and Langmuir probe were used to measure the ion current densities, electron temperatures, ion densities, and plasma potentials. The ion current densities as function of pressure and microwave power have been studied.  相似文献   

7.
The electron densities in the atmospheric pressure helium plasma were calculated by means of electron drift velocity and the jet velocity respectively. The electron velocity and jet velocity can be calculated by means of helium plasma jet current measured by a dielectric probe and plasma discharge current signal measured by voltage probes. The results show that the estimated electron densities of the helium plasma jet calculated from electron drift velocity and the jet velocity are in the order of 10 11 cm -3 and they increase with applied voltage. There is a little fluctuation in the value of the electron density along the jet axis of the plasma. This result is the same as the measured electron density in atmospheric pressure helium non-thermal plasma jet by using a Rogowski coil and a Langmuir probe. This is in one order lower than the electron density measured by microwave antenna.  相似文献   

8.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。  相似文献   

9.
高碧荣  刘悦 《物理学报》2011,60(4):45201-045201
基于漂移扩散近似,在轴对称假设下,对电子回旋共振等离子体源腔室内的等离子体建立了二维流体模型.采用有限差分法对所建立的模型进行了自洽数值模拟,得到了等离子体密度均匀性随时间演化的数值结果.通过对数值结果的分析,研究了背景气体压强、微波功率和磁场线圈电流对等离子体密度均匀性的影响.研究表明,在电离初期,电子密度的均匀性好于离子密度的均匀性.在电离后期,离子密度的均匀性好于电子密度的均匀性.随着背景气体压强的增大,电子密度和离子密度的均匀性都在增加,且离子密度的均匀性增加的更快.随着微波功率的增大,电子密度和 关键词: 等离子体密度均匀性 背景气体压强 微波功率 磁场线圈电流  相似文献   

10.
11.
A basic property of an electronegative plasma is its separation into two distinct regions: an ion‐ion region far from boundaries, where the densities of positive and negative ions are higher then electron density, and a near‐boundary electron‐ion region, where negative ions have practically negligible density. This is due to the influence of the ambipolar electric field, which depends on electron (not negative ion) plasma parameters. This electric field “holds off” negative ions from the boundary, as the ions have lower mobility and temperature compared to the electrons. Therefore, negative ions will be repelled by any object inserted into the plasma. This can lead to errors in measurements of negative ion and electron parameters by any invasive method. Numerical modeling of electric probes in an argon‐oxygen plasma clearly demonstrates possible errors of direct measurements of negative ion probe current. This can also affect results from the photo‐detachment method and direct measurements of negative ion energy distribution (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In the present work we investigate theoretically and experimentally the influence of elastic collisions in a probe sheath on a cylindrical Langmuir probe. The analysed probe working regime covers conditions under which the following probe characteristic parameters are comparable: the probe radius, the Debye length and both the ion and electron mean free paths.The preliminary investigations under almost collisionless conditions show good agreement between theoretical and experimental values of the ion saturation currents and of the floating potentials only when the ion currents for the studied working regime of the cylindrical Langmuir probe are calculated according to the theory of Chen (Plasma Phys.7 (1965)47). These collisionless currents form the basis for the calculation of the collision-corrected probe characteristics according to the presented procedure by Talbot and Chou (Rarefied Gas Dynamics, Academic Press, New York, 1966, p. 1723).The applied theoretical analysis covers the influence of the collisions on the electron and ion current of the single probe characteristic and on the estimation of the space potential. The results of the calculations are presented in graphical overviews for the series of cases of practical importance. The other working regimes can be covered using the calculating procedure presented.For comparison of the calculated collision-corrected characteristics with those from an experiment we used the positive column plasma of the He glow discharge where the electron density is known and the space potential can be experimentally estimated from the lowest excitation potential of He. The comparison was carried out for the ion and electron currents, the floating potential and the zero-cross of the probe characteristic second derivative.The estimation of the secondary electron current contribution to the total probe current shows that it limits the applicability of the collision-corrected probe characteristic to the plasma diagnostic in the transition to the collision-determined working regime.  相似文献   

13.
The correctness of the known plane single-ended probe method for measuring the anisotropic ion distribution functions in a gas-discharge plasma has been considered. Analysis has been performed for positive probe potentials relative to the plasma with magnitudes on the order of the mean ion energy, which as a rule is much lower than the mean electron energy. We have analyzed the dependence of the collection surface area of a plane probe on its potential in this range. The structure of the near-probe layer has been determined for an isotropic electron distribution function of the Maxwellian or Druvestein type and an anisotropic ion distribution function. These results are used to derive analytic relations for the correction to the second derivative of the probe current with respect to the plane probe potential. It has been shown that, when the ion distribution function is measured in a wide range of conditions in the gas-discharge plasma, when the approximation of a collisionless probe layer is applicable, and the probe does not perturb the plasma, the dependence of the collection surface area of the probe on the potential can be disregarded in this range.  相似文献   

14.
The discharge characteristics and the parameters of the cathode plasma in a two-stage ion source with a grid plasma cathode and a magnetic trap in the anode region are investigated. It is shown that an increase in the gas pressure and the accompanying increase in the reverse ion current in the bipolar diode between the cathode and anode plasmas lead to an increase in the cathode plasma potential and a transition of the cathode into the regime of electron emission from the open plasma boundary. The dependence of the ion current extracted from the anode plasma on the area of the exit aperture of the hollow cathode and the mesh size of the grid plasma cathode is explained. The conditions at which the ion emission current from the anode plasma is maximum are determined. The potential difference at the bipolar diode is measured by using the probe method. It is shown that, when the gas pressures reaches a critical value determined by the mesh size of the grid plasma cathode, the discharge passes into a contracted operating mode, in which the ion current extracted from the anode plasma decreases severalfold.  相似文献   

15.
The Particle In Cell/Monte Carlo Collisions (PIC/MCC) simulation was used for the calculation of electron and ion currents to a spherical Langmuir (electrostatic) probe. This simulation took into account the collisions of collected charged particles with neutral gas particles around the probe and it can calculate the probe currents at higher neutral gas pressures. The improvements of usual simulation techniques enabled to speed up the simulation and to calculate the probe current even for neutral gas pressures above 1 kPa. The simulations were carried out for two cases: i) probe with radius of 0.5 mm in non‐thermal plasma with high electron temperature, ii) probe with radius of 10 µm in afterglow plasma with low electron temperature. The influence of probe radius on electron probe current was also studied. The simulations showed that thick sheath limit of OML theory provides incorrect values of probe current for probes with radii larger than 200 µm at plasma parameters considered even at very low neutral gas pressures. The probe characteristics were calculated for probe with 0.5 mm radius for pressures up to 500 Pa and for probe with 10 μm radius for pressures up to 3 kPa. The influence of collisions on electron and ion probe current was demonstrated and the procedure for determination of electron and ion densities from the probe measurement at higher pressures was developed. The results from PIC/MCC simulations were compared with results from continuum theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A novel probe and approach to the direct measurements of the plasma potential in a strong magnetic field is suggested. The principle of this method is to reduce the electron saturation current to the same magnitude as that of the ion saturation current. In this case, the floating potential of the probe becomes indentical to the plasma potential. This goal is attained by a shield, which screens off an adjustable part of the electron current from the probe collector due to the much smaller gyro-radius of the electrons. First systematic measurements have been perfomred in the CASTOR tokamak.  相似文献   

17.
We analyze the variation of the floating potential of an insulated metallic electrode in a flow of electrons with an energy of up to 300 eV under a gas pressure of 0.1–1.0 Pa at a current density lower than 0.1 A/cm2. It is shown that the dependence of the floating potential on the initial electron energy is non-monotonic; this fact is explained by the variation of the ratio of the ion current density to the density of fast electron current in the plasma. The balance of the electron and ion currents on the surface of an insulated electrode is ensured by the cutoff of the low-energy part of the electron flow at the level determined by the magnitude of the floating potential. The maximal value of the floating potential increases upon a decrease in the gas pressure; this is due to a decrease in the ion current density. The interval of energy variation in which the floating potential decreases from the maximal value (50–250 eV) to 5–6 eV increases with the electron current density and the gas pressure. The electrode material and the type of the gas do not noticeably affect the variation of the floating potential.  相似文献   

18.
In this article a method of estimation of the positive ion density from the double probe data is developed. In the presented method we suggest to use the single probe collisional model developed in [10]. The method itself can, however, use any ion/electron collection model and the pressure range of applicability of the method will then depend on the range of pressures within which the used particle collection model is valid. The application of the developed method is demonstrated on a sample of experimental double probe data and the ion density determined from these data is compared to the electron density estimated independently using the microwave diagnostic technique.  相似文献   

19.
A model is proposed for the multicathode-spot (MCS) vacuum arc. A zero-order model is filrst constructed, whereby the interelectrode plasma is produced by the multitude of cathode spots, and flows to the anode upon which it condenses. The electron density is calculated by assuming that the plasma is uniform within a cylinder bounded by the electrodes and using expenmental data for the ionic velocities and ion current fraction obtained in single cathode spot arcs. The electron density thus obtained is proportionate to the current density, and is equal to 5 × 1020 m-3 in the case of a 107-A/m2 Cu arc. The model predictions are a factor of 3-4 lower than measured values. First-order perturbations to the zero-order model are considered taking into account inelastic electron-ion collisions, plasma-macroparticle interactions, the interaction of the self-magnetic field with the plasma and electric current flows, and the interaction with the anode. Inelastic collisions tend to increase the ionicity of the plasma as a function of distance from the cathode, in agreement with spectroscopic observations. Macroparticles are heated by ion impact until they have significant evaporation rates. The vapor thus produced is ultimately ionized, and most probably accounts for the discrepancy between the zero-order prediction of electron densities and the measured values. Constrictions near the anode in both the plasma and electric current flows have been calculated. An overabundant electron current supply forces the anode to assume a negative potential with respect to the adjacent plasma.  相似文献   

20.
介绍了一种对等离子体边缘进行径向扫描的往复静电探针系统,该系统由高压气源、传输杆、光栅尺、探针组件构成。它在一次放电中能测量主等离子体边缘的温度、密度、悬浮电位、空间电位、离子饱和电流、极向电场、粒子通量等参数的径向分布以及电子温度和密度的衰减长度。测量结果表明,利用该系统测量的主等离子体边缘参数分布与JT-60U、TEXT、HT-7等装置上测量的结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号