首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tricyclic dimethylene hydrocarbons 5 , 6 , 7 , 8 and d2- 5 , (Scheme 2), which are prepared by Wittig-reaction from the corresponding ketones, are rearranged, by heating, to 4-aryl-but-1-yne derivatives via the unstable 6-allenyl-1-methylene-cyclohexa-2, 4-diene intermediates (e.g. Scheme 14). Using the deuterium-labelled compound d2- 5 , it was shown that the allenyl moiety, formed by a retro-Diels-Alder reaction (cycloreversion) of the tricyclic dimethylene compound, migrates with complete inversion in the final o-semibenzene-benzene rearrangement (Schemes 11 and 14). Reaction of 6-propargyl-cyclohexa-2, 4-dien-1-ones with triphenylphosphonium methylide gives 6-propargyl-1-methylene-cyclohexa-2 4-dienes, which immediately undergo a [3s, 3s]-rearrangement to form 4-aryl-buta-1, 2-dienes (Scheme 9). In contrast, the rearrangement of the corresponding 4-propargyl-1-methylene-cyclohexa-2, 5- dienes proceeds by a radical mechanism (Schemes 10 and 13).  相似文献   

2.
The thermal rearrangement of 7 -propargyloxy-cycloheptatriene in decane solution at 180°C gave bicyclo[3.3.2]deca-3,7,9-trien-2-one ( 13 ) and the unstable 2,7-dihydro-cyclohepta[ b ]-pyran ( 12 ) (Scheme 2). The structures of these compounds were determined mainly by NMR. spectroscopy. Derivatives of 13 were also identified by comparison with known compounds (Scheme 3). Possible mechanisms for the formation of 13 and 12 are outlined in Schemes 5 and 6 respectively. The thermal rearrangement of 2-propargyloxy-cycloheptatrienone ( 21 ) gave, in high yield, 2-methyl-8H-cyclohepta[b]furan-8-one ( 22 ) (Scheme 7).  相似文献   

3.
The thermal reaction of 7-isopropyl-1,3,4-trimethylazulene (3-methylguaiazulene; 2 ) with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° leads to the formation of the corresponding heptalene- ( 5a/5b and 6a/6b ; cf. Scheme 3) and azulene-1,2-dicarboxylates ( 7 and 8 , respectively). Together with small amounts of a corresponding tetracyclic compound (‘anti’- 13 ) these compounds are obtained via rearrangement (→ 5a/5b and 6a/6b ), retro-Diels-Alder reaction (→ 7 and 8 ), and Diels-Alder reaction with ADM (→ ‘anti’- 13 ) from the two primary tricyclic intermediates ( 14 and 15 ; cf. Scheme 5) which are formed by site-selective addition of ADM to the five-membered ring of 2 . In a competing Diels-Alder reaction, ADM is also added to the seven-membered ring of 2 , leading to the formation of the tricyclic compounds 9 and 10 and of the Diels-Alder adducts ‘anti’- 11 and ‘anti’- 12 , respectively of 9 and of a third tricyclic intermediate 16 which is at 200° in thermal equilibrium with 9 and 10 (cf. Scheme 6). The heptalenedicarboxylates 5a and 5b as well as 6a and 6b are interconverting slowly already at ambient temperature (Scheme 4). The thermal reaction of guaiazulene ( 1 ) with excess ADM in decalin at 190° leads alongside with the known heptalene- ( 3a ) and azulene-1,2-dicarboxylates ( 4 ; cf. Schemes 2 and 7) to the formation of six tetracyclic compounds ‘anti’- 17 to ‘anti’- 21 as well as ‘syn’- 19 and small amounts of a 4:1 mixture of the tricyclic tetracarboxylates 22 and 23 . The structure of the tetracyclic compounds can be traced back by a retro-Diels-Alder reaction to the corresponding structures of tricyclic compounds ( 24--29 ; cf. Scheme 8) which are thermally interconverting by [1,5]-C shifts at 190°. The tricyclic tetracarboxylates 22 and 23 , which are slowly equilibrating already at ambient temperature, are formed by thermal addition of ADM to the seven-membered ring of dimethyl 5-isopropyl-3,8-dimethylazulene-1,2-dicarboxylate ( 7 ; cf. Scheme 10). Azulene 7 which is electronically deactivated by the two MeOCO groups at C(1) and C(2) shows no more thermal reactivity in the presence of ADM at the five-membered ring (cf. Scheme 11). The tricyclic tetracarboxylates 22 and 23 react with excess ADM at 200° in a slow Diels-Alder reaction to form the tetracyclic hexacarboxylates 32 , ‘anti’- 33 , and ‘anti’- 34 (cf. Schemes 10–12 as well as Scheme 13). A structural correlation of the tri- and tetracyclic compounds is only feasible if thermal equilibration via [1,5]-C shifts between all six possible tricyclic tetracarboxylates ( 22, 23 , and 35–38 ; cf. Scheme 13) is assumed. The tetracyclic hexacarboxylates 32 , ‘anti’- 33 , and ‘anti’- 34 seem to arise from the most strained tricyclic intermediates ( 36–38 ) by the Diels-Alder reaction with ADM.  相似文献   

4.
A number of aryl 3‐arylprop‐2‐ynoates 3 has been prepared (cf. Table 1 and Schemes 3 – 5). In contrast to aryl prop‐2‐ynoates and but‐2‐ynoates, 3‐arylprop‐2‐ynoates 3 (with the exception of 3b ) do not undergo, by flash vacuum pyrolysis (FVP), rearrangement to corresponding cyclohepta[b]furan‐2(2H)‐ones 2 (cf. Schemes 1 and 2). On melting, however, or in solution at temperatures >150°, the compounds 3 are converted stereospecifically to the dimers 3‐[(Z)‐diarylmethylidene]‐2,3‐dihydrofuran‐2‐ones (Z)‐ 11 and the cyclic anhydrides 12 of 1,4‐diarylnaphthalene‐2,3‐dicarboxylic acids, which also represent dimers of 3 , formed by loss of one molecule of the corresponding phenol from the aryloxy part (cf. Scheme 6). Small amounts of diaryl naphthalene‐2,3‐dicarboxylates 13 accompanied the product types (Z)‐ 11 and 12 , when the thermal transformation of 3 was performed in the molten state or at high concentration of 3 in solution (cf. Tables 2 and 4). The structure of the dihydrofuranone (Z)‐ 11c was established by an X‐ray crystal‐structure analysis (Fig. 1). The structures of the dihydrofuranones 11 and the cyclic anhydrides 12 indicate that the 3‐arylprop‐2‐ynoates 3 , on heating, must undergo an aryl O→C(3) migration leading to a reactive intermediate, which attacks a second molecule of 3 , finally under formation of (Z)‐ 11 or 12 . Formation of the diaryl dicarboxylates 13 , on the other hand, are the result of the well‐known thermal Diels‐Alder‐type dimerization of 3 without rearrangement (cf. Scheme 7). At low concentration of 3 in decalin, the decrease of 3 follows up to ca. 20% conversion first‐order kinetics (cf. Table 5), which is in agreement with a monomolecular rearrangement of 3 . Moreover, heating the highly reactive 2,4,6‐trimethylphenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3f ) in the presence of a twofold molar amount of the much less reactive phenyl 3‐(4‐nitrophenyl)prop‐2‐ynonate ( 3g ) led, beside (Z)‐ 11f , to the cross products (Z)‐ 11fg , and, due to subsequent thermal isomerization, (E)‐ 11fg (cf. Scheme 10), the structures of which indicated that they were composed, as expected, of rearranged 3f and structurally unaltered 3g . Finally, thermal transposition of [17O]‐ 3i with the 17O‐label at the aryloxy group gave (Z)‐ and (E)‐[17O2]‐ 11i with the 17O‐label of rearranged [17O]‐ 3i specifically at the oxo group of the two isomeric dihydrofuranones (cf. Scheme 8), indicating a highly ordered cyclic transition state of the aryl O→C(3) migration (cf. Scheme 9).  相似文献   

5.
It is shown that, upon irradiation in CDCl3 solution, 5,6,8,10-tetramethylheptalene-1,2-dicarboxylic anhydride ( 6 ) rearranges to its double-bond-shift (DBS) isomer 7 in an equilibrium reaction (Scheme 2). The isomer 7 is DBS stable at ?50°. At ca. 30°, a thermal equilibrium with 97.8% of 6 and 2.2% of 7 is rapidly established. Similarly, the ‘ortho’-anhydrides 9 and 11 (Schemes 4 and 5) can be rearranged to their corresponding DBS isomers 12 and 13 , respectively. Whereas 12 is DBS stable at 30° (at 100° in tetralin, 94.0% of 9 are in equilibrium with 6.0% of 12 ), the i-Pr-substituted isomer 13 is already at 30° in thermal equilibrium with 11 leading to 98.7% of 11 and 1.3% of 13 . It is shown by rearrangement of diasteroisomeric ‘ortho’-anhydrides of known relative and absolute configuration (Scheme 6) that the DBS in such five-ring-annelated heptalenes occurs with retention of the configuration of the heptalene skeleton as already established for other heptalene compounds. It is found that the DBS process may also take place under acid catalysis (e.g. HCl/CH3OH), thus yielding 9 from 12 (Scheme 9). The ‘ortho’-anhydrides 21 and 23 (Scheme 10) which are isomeric with 9 and 11 (Scheme 3) undergo rapid DBS' already at room temperature. The thermal equilibrium 21?22 consists of 18% of 21 and 82% of 22 at 30° and that of 23?24 of 17% of 23 and 83% of 24 at ?30°. From these equilibrium mixtures, the pure DBS isomer 22 can be obtained by crystallization. Again, these rapid DBS' occur with retention of configuration of the heptalene skeleton (Fig. 4).  相似文献   

6.
Intramolecular cyloadditions of binaphtyl compounds Three new bridged ketones, 7,8 and 9 , have been isolated in 44%, 3% and 19% yields respectively (Scheme 2) by heating 2,2′-bis-allyloxy-1,1′-binaphthyl ( 5 ) at 215° for 16 hours. These compounds could be epimerized about C(16) by bases, and in particular 9 yielded the new epimer 10 . The structures of the alcohols obtained by reduction of the keto group are also given (Scheme 2). The constitution of all compounds was derived from spectroscopic data, chiefly from their 1H-NMR, spectra (tab. 2, 3 and fig. 1). The assignments were based on the observed long-range coupling constant between H(endo)-C(16) and H(endo)-C(5) in 7 and 10 and on the analysis of chemical shifts and coupling constants in both the ketones and their derivatives. Moreover, the structures of the compounds investigated have been proved by x-ray analysis of ketone 8 (chap. 3, fig. 2). The thermal conversion of binaphthylether 5 to the bridged ketones proceeds via an intramolecular Diels-Alder reaction, followed by Claisen rearrangement (Scheme 8). On heating, the bis-beta-methylallyl ether 20 yielded the ketone 21 and a small amount of the ether 23 (Schemes 5 and 7). Ether 23 and binaphthyl monoallyl ether 26 were converted thermally to the bridged ketones 31 (Scheme 7) and 27 (Scheme 6) respectively. In addition, 26 underwent an intramolecular ene-reaction to give the spiroketone 28 (Schemes 6 and 9). The structures of these compounds were also established, mainly by analysis of their 1H-NMR. spectra.  相似文献   

7.
On the Photochemistry of 2, 1-Benzisoxazoles (Anthraniles) and on the Thermal and Photochemical Decomposition of 2-Azido-acylbenzenes in Strongly Acidic Solution Anthranils 6 (Scheme 3), when irradiated with a mercury high-pressure lamp, in 96% sulfuric acid yielded, after work-up, 2-amino-5-hydroxy-acylbenzenes 8 and as side products 2-amino-3-hydroxy-acylbenzenes 9 (cf. Schemes 5–7 and Table 1). When C(5) of the anthranils 6 carries a methyl group a more complex reaction mixture is found after irradiation in 96% sulfuric acid (cf. Schemes 8 and 9): 3, 5-dimethyl-anthranil ( 6d ) yielded (after irradiation and acetylation) 2-acetyl- amino-5-methyl-acetophenone ( 15 ), 2-acetylamino-5-acetoxymethyl-acetophenone ( 18d ) and 2-acetylamino-5-acetoxy-6-methyl-acetophenone ( 12c ). The latter product was also formed after irradiation of 3, 4-dimethylanthranil ( 6c ) in 96% sulfuric acid. 3, 5, 7-Trimethyl-anthranil ( 6f ) formed under the same conditions 2-acetylamino-3, 5-dimethyl-acetophenone ( 15f ) and 2-acetylamino-5-acetoxymethyl-3-methyl-acetophenone ( 18f ). Since qualitatively the same product patterns were observed when the corresponding 2-azido-acetophenones 7 were decomposed in 96% sulfuric acid it is concluded that anthranilium ions (cf. 6b -H⊕, Scheme 11) on irradiation are transformed by cleavage of the N, O-bond into 2-acyl-phenylnitrenium ions (cf. 25b -H⊕) in the singlet ground state. The nitrenium ions are trapped directly by nucleophiles ( HSO ?4 in 96% sulfuric acid), thus, yielding the hydroxy-acetophenones 8 and 9 (Scheme 11). If C(5) is blocked by a methyl group a [1, 2]-rearrangement of the methyl group may occur (cf. Scheme 13) or loss of sulfuric acid can lead to quinomethane iminium ions (cf. 32-H⊕ , Scheme 13) which will react with HSO ?4 ions to yield, after hydrolysis and acetylation, the 5-acetoxymethyl substituted acetophenones 18d and 18f . It is assumed that the reduction products (2-acetylamino-acetophenones 15 ) are formed from the corresponding nitrenium ions in the triplet ground state.  相似文献   

8.
On the Photochemistry of 1H- and 2H-Indazoles in Acidic Solution It is shown that 1H- and 2H-indazoles (cf. Scheme 2) on protonation (0, 1N H2SO4 in water or alcoholic solution) give analogous indazolium ions (see Fig. 1 and 2) which on irradiation undergo heterolytic cleavage of the N (1), N (2) bond whereby aromatic nitrenium ions in the singlet ground state are formed (cf. Scheme 13). If the para position of these nitrenium ions is not occupied by a substituent (e.g. a methyl group) they are readily trapped by nucleophiles present (e.g. water, alcohols, chloride ions) to yield the corresponding 5-substituted 2-amino-benzaldehydes or acetophenones (cf. Schemes 4–10). Photolysis of indazole ( 4 ) and 3-methyl-indazole ( 5 ) in 0,75N H2SO4 in alcoholic solutions gives in addition minor amounts of the corresponding 3-substituted 2-amino-benzaldehydes and acetophenones, respectively (cf. Schemes 6 and 8 and Table 2). Phenylnitrenium ions carrying a methyl group in the para position give in aqueous sulfuric acid mainly the reduction products, i.e. 2-amino-5-methyl-benzaldehydes (cf. Schemes 11 and 12 and Table 3). In methanolic sulfuric acid, in addition to the reduction products, 6-methoxy substituted benzaldehydes are found (cf. Schemes 11 and 12 and Table 3) which are presumably formed by an addition-elimination mechanism (cf. Scheme 18). It is assumed that precursors of the reduction products are the corresponding nitrenium ions in the triplet ground state. Singlet-triplet conversion of the nitrenium ions may become efficient when addition of nucleophiles to the singlet nitrenium ions is reversible (cf. Scheme 22) thus, enhancing the probability of conversion or when conjugation in the singlet nitrenium ions is disturbed by steric effects (cf. Scheme 20) thus, destabilizing the singlet state relative to the triplet state.  相似文献   

9.
The [Co2(CO)8]-mediated retro-Diels-Alder reaction of the annelated barrelenes 1 afforded the 1H-indol-2(3H)-one derivatives 3 (Scheme 1), while the hydrobarrelene 4a , under the same conditions, was converted to the anilide 6 (Scheme 2); 4b remained unaffected. The direct irradiation of 1 led to the annelated cyclooctatetraenes 7 (Scheme 3). On irradiation in the presence of excess of [Fe(CO)5], 1a , 1b , and 4a gave the tricarbonyliron complexes 8 , 9 , and 11 , respectively (Schemes 3 and 4); under these conditions, 4b was inert.  相似文献   

10.
Photochemistry of tricyclic β, γ-γ′, δ′-unsaturated ketones The easily available tricyclic ketone 1 (cf. Scheme 1) with a homotwistane skeleton yielded upon direct irradiation the cyclobutanone derivative 3 by a 1,3-acyl shift. Further irradiation converted 3 into the tricyclic hydrocarbon 4 . However, acetone sensitized irradiation of 1 gave the tetracyclic ketone 5 by an oxa-di-π-methane rearrangement. Again with acetone as a sensitizer the ketone 5 was quantitatively converted to the pentacyclic ketone 6 . The conversion 5 → 6 represents a novel photochemical 1,4-acyl shift. The possible mechanisms are discussed (see Scheme 7). The tricyclic ketone 2 underwent similar types of photoreactions as 1 (Scheme 2). Unlike 5 the tetracyclic ketone 9 did not undergo a photochemical 1,4-acyl shift. The epoxides 10 and 14 derived from the ketones 1 and 2 , respectively, underwent a 1,3-acyl shift upon irradiation followed by decarbonylation, and the oxa-di-π-methane rearrangement (Schemes 3 and 4). The diketone 18 derived from 1 behaved in the same way (Scheme 5). The tetracyclic diketone 21 cyclized very easily to the internal aldol product 22 under the influence of traces of base (Scheme 5). Upon irradiation the γ, δ-unsaturated ketone 24 underwent only the Norrish type I cleavage to yield the aldehyde 25 (Scheme 6).  相似文献   

11.
Synthesis and Reactions of 8-membered Heterocycles from 3-Dimethylamino-2,2-dimethyl-2H-azirine and Saccharin or Phthalimide 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts at 0-20° with the NH-acidic compounds saccharin ( 2 ) and phthalimide ( 8 ) to give the 8-membered heterocycles 3-dimethylamino-4,4-dimethyl-5,6-dihydro-4 H-1,2,5-benzothiadiazocin-6-one-1,1-dioxide ( 3a ) and 4-dimethylamino-3,3-dimethyl-1,2,3,6-tetrahydro-2,5-benzodiazocin-1,6-dione ( 9 ), respectively. The structure of 3a has been established by X-ray (chap. 2). A possible mechanism for the formation of 3a and 9 is given in Schemes 1 and 4. Reduction of 3a with sodium borohydride yields the 2-sulfamoylbenzamide derivative 4 (Scheme 2); in methanolic solution 3a undergoes a rearrangement to give the methyl 2-sulfamoyl-benzoate 5 . The mechanism for this reaction as suggested in Scheme 2 involves a ring contraction/ring opening sequence. Again a ring contraction is postulated to explain the formation of the 4H-imidazole derivative 7 during thermolysis of 3a at 180° (Scheme 3). The 2,5-benzodiazocine derivative 9 rearranges in alcoholic solvents to 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl) benzoates ( 10 , 11 ), in water to the corresponding benzoic acid 12 , and in alcoholic solutions containing dimethylamine or pyrrolidine to the benzamides 13 and 14 , respectively (Scheme 5). The reaction with amines takes place only in very polar solvents like alcohols or formamide, but not in acetonitrile. Possible mechanisms of these rearrangements are given in Scheme 5. Sodium borohydride reduction of 9 in 2-propanol yields 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl)benzyl alcohol ( 15 , Scheme 6) which is easily converted to the O-acetate 16 . Hydrolysis of 15 with 3N HCl at 50° leads to an imidazolinone derivative 17a or 17b , whereas hydrolysis with 1N NaOH yields a mixture of phthalide ( 18 ) and 2-hydroxymethyl-benzoic acid ( 19 , Scheme 6). The zwitterionic compound 20 (Scheme 7) results from the hydrolysis of the phthalimide-adduct 9 or the esters 11 and 12 . Interestingly, compound 9 is thermally converted to the amide 13 and N-(1′-carbamoyl-1′-methylethyl)phthalimide ( 21 , Scheme 7) whose structure has been established by an independent synthesis starting with phthalic anhydride and 2-amino-isobutyric acid. However, the reaction mechanism is not clear at this stage.  相似文献   

12.
Base Catalysed Cyclizations of 2-(2-Propynyl)oxy-benzamide Systems 2-(2-Propynyl)oxy-benzamides were cyclized under base catalysis to 6- or 7-membered ring compounds, depending on the reaction conditions. Treatment of 2-(2-propynyl)oxy-benzamide ( 10 ) with sodium methylsulfinylmethanide (NaMSM) in DMSO gave two isomeric oxazepinons 11 (34%) and 12 (7%), while the transformation with sodium-2-propanolate in 2-propanol afforded the oxazinone 13 (34%) and with lithium cyclohexyl-isopropylamide (Li-CHIP) in N-methylpyrrolidone 11 (48%) exclusively (Scheme 4). N-Methyl-2-(2-propynyl)-oxy-benzamide ( 14 ) behaved similarly. In the reaction of 14 with sodium 2-propanolate in 2-propanol yielding the benzoxazinone 16 , the allenyloxy-benzamide 17 could be isolated as an intermediate (Scheme 5). The N-phenyl-compounds 18 and 22 treated with NaMSM/DMSO were converted to 3-anilino-2-methyl-benzo- and naphtho-pyran-4-ones, respectively (Schemes 6 and 7). The mechanisms for these reactions are discussed (Schemes 8, 9 and 10).  相似文献   

13.
Synthesis of new polycyclic compounds by means of intramolecular Diels-Alder reactions of cyclohexa-2,4-dien-1-one derivatives Thermal rearrangement of mesityl penta-2,4-dienyl ether ( 1 ), consisting of the isomers E (93%) and Z (7%), furnished, besides mesitol, the two mesityl penta-1,3-dienyl ethers 2 (24%) and 3 (3%), and the two tricyclic ketones 4 (4,5%) and 5 (12,5%) (Scheme 1). A probable mechanism for this formation of 2 involves a [1,5]-hydrogen shift in (Z)- 1 . Isomerisation of (E)- 1 to (Z)- 1 at 145° occurs via reversible sigmatropic [3,3]- and [5,5]-rearrangements of (E)- 1 to the cyclohexadienones 38 and 39 respectively (see Chapter A p. 1710, and Scheme 15). Formation of 3 from either (Z)- 1 or 2 is rationalized by a series of pericyclic reactions as outlined in Chapter A and Scheme 16. The tricyclic ketones 4 and 5 are undoubtedly formed by internal Diels-Alder reactions of the 6-pentadienyl-cyclohexa-2,4-dien-1-one 6 (Scheme 2). In fact, at 80° 6 is converted into 4 (5%) and 5 (35%). At 80° the cyclohexadienone derivative 7 furnished the corresponding tricyclic ketones 8 (15%) and 9 (44%) (Scheme 2). 5 and 9 contain a homotwistane skeleton. 8 and 9 are easily prepared by reaction of sodium 2,6-dimethylphenolate with 3-methyl-penta-2,4-dienyl bromide at ambient temperature, followed by heating, and finally separation by cristallization and chromatography. The cyclohexadienones 6 and 7 have mainly (E)-configuration. Here too (E) → (Z) isomerization is a prerequisite for the internal Diels-Alder reaction, and this partly takes place intramolecularly through reversible Claisen and Cope rearrangements (Scheme 17). On the other hand, experiments in the presence of 3,5-d2-mesitol have shown (Table 1) that intermolecular reactions, involving radicals and/or ions, are also operating (see Chapter B , p. 1712). Two different modi (I and II) exist for intramolecular Diels-Alder reactions (Scheme 18). Whereas only modus I is observed in the cyclization of 5-alkenyl-cyclohexa-l,3-dienes, in that of (2)-cyclohexadienones 6 and 7 (Scheme 2) both modi are operating. Only in modus 11-type transitions is the butadienyl conjugation of the side chain retained, so that modus 11-type addition is preferred (Chapter C p. 1716). Analogously to the synthesis of the tricyclic ketones 4 , 5 , 8 and 9 , the tricyclic ketone 15 (Scheme 4) and the tetracyclic ketone 11 (Scheme 3) are prepared from mesitol, pentenyl bromide and cycloheptadienyl bromide, respectively. From the polycyclic ketones derivatives such as the alcohols 16 , 17 , 18 , 19 , 23 , 24 and 25 (Schemes 9 and 11), policyclic ethers 20 , 21 , 22 and 26 (Scheme 10), epoxides 30 , 32 (Scheme 13), diketones 31 , 33 (Scheme 13) and ether-alcohols 35 and 36 (Scheme 14) have been prepared. Most of these conversions show high stereoselectivity.  相似文献   

14.
In presence of a strong base, the 13-membered cyclic compound 3 yielded, by loss of acetonitrile or its equivalent, the bicyclic product 5 instead of the 17-membered compound 4 as expected (Scheme 2). Investigation of model compounds (Scheme 4) and of model reactions (Schemes 5 and 6) led to the conclusion that the reaction proceeds via an intermediate formaldehyde imine; a Schiff base, e.g. 3b (Scheme 5), which reacts intra- and intermolecularly with a nucleophile to form a Mannich-type product. It seems to be a general principle that N-substituted 3-aminopropanenitrile and 2-aminoacetonitrile derivatives behave in the presence of a strong base as Schiff -base equivalents (Schemes 5 and 6).  相似文献   

15.
Both enantiomers of tert-butyl 2-(tert-butyl)-5,5-dimethyl-4-oxoimidazolidine-1-carboxylate ( 11 ; Bbdmoic) were prepared from L -alanine (Schemes 1 and 2). The parent heterocycle, 2-tert-butyl-5,5-dimethylimidazolidin-4-one ( 12 ; from 2-aminoisobutyramide, H-Aib-NH2, and pivalaldehyde) was also available in both enantiomeric forms by resolution with O,O′-dibenzoyltartaric acid. The compound (R)- or (S)- 11 was used as an auxiliary, but also as a chiral Aib building block in a dipeptide synthesis. The 3-propanoyl derivative 13 of (R)- 11 was used for the preparation of enantiomerically pure 2-methyl-3-phenylpropanoic acid (enantiomer ratio (e.r.) 99.5:0.5), by benzylation of the Zn-enolate (→ 14 ; Scheme 3). Oxidative coupling of the bis-enolate derived from heptanedioic acid and (S)- 11 (→ 23 ) and methanolysis of the auxiliary gave dimethyl trans-cyclopentane-1,2-dicarboxylate ( 26 ) with an e.r. of 93:7 (Scheme 5, Fig. 5). The 3-(Boc-Gly)-Bbdmoic derivative 29 was doubly deprotonated and, after addition of ZnBr2 alkylated with alkyl, benzyl, or allyl halides to give the higher amino-acid derivatives with excellent selectivities (e.r. > 99.5:0.5, Schemes 6 and 7). Michael additions of cuprates to [(E)-MeCH?CHCO]-Bbdmoic 36 occurred in high yields, but high diastereoselectivities were only observed with aryl cuprates (diastereoisomer ratio (d.r.) 99:1 for R = Ph, Scheme 8). Finally, 3-(Boc-CH2)-Bbdmoic 17 was alkylated through the ester Li-enolate with primary and secondary alkyl, allyl, and benzyl halides with diastereoselectivities (ds) ranging from 91 to 98%, giving acetals of Boc-Aib-Xxx-O(t-Bu) dipeptides (Scheme 4). The effectiveness of Bbdmoic is compared with that of other chiral auxiliaries previously used for the same types of transformations.  相似文献   

16.
Photochemistry of 4-substituted 5-Methyl-3-phenyl-isoxazoles. 4-Trideuterioacetyl-5-methyl-3-phenyl-isoxazole ([CD3CO]- 27 ), upon irradiation with 254 nm light, was converted into a 1:1 mixture of oxazoles [CD3CO]- 35 and [CD3]- 35 (Scheme 13). This isomerization is accompagnied by a slower transformation of ([CD3CO]- 27 ) into [CD3]- 27 . Irradiation of the isoxazole derivatives 28, 29, 30 and (E)- 31 yielded only oxazoles 36, 37, 38 and (E), (Z)- 39 ; no 4-acetyl-5-alkoxy-2-phenyl-oxazole, 2-acetyl-3-methyl-5-phenyl-pyrrole or 2-acetyl-4-methoxycarbonyl-3-methyl-5-phenyl-pyrrole, respectively, were formed (Scheme 9 and 10). Similarly (E)- 32 gave a mixture of (E), (Z)- 40 only (Scheme 11). Upon shorter irradiation, the intermediate 2H-azirines (E), (Z)- 41 could be isolated (Scheme 11). Photochemical (E)/(Z)-isomerization of the 2-(trifluoro-ethoxycarbonyl)-1-methyl-vinyl side chain in all the compounds 32, 40 and 41 is fast. At 230° the isoxazoles (E)- and (Z)- 32 are converted into oxazoles (E), (Z)- 40 . The same compounds are also obtained by thermal isomerization of the 2H-azirines (E), (Z)- 41 . The most probable mechanism for the photochemical transformations of the isoxazoles, as exemplified in the case of the isoxazole 27 , is shown in Scheme 13. A benzonitrile-methylide intermediate is postulated for the photochemical conversion of the 2H-azirines into oxazoles. 2H-Azirines are also intermediates in the thermal isoxazole-oxazole rearrangement. It is however not yet clear, if the thermal 2H-azirine-oxazole transformation involves the same transient species as the photochemical reaction. A mechanism for the photochemical isomerization of the 2H-azirine 11 to the oxazole 15 is proposed (Scheme 3).  相似文献   

17.
Reaction of 2,2-dialkyl-3-(dimethylamino)-2H-azirines 1a and 1b with 2,3-pyridinedicarboximide ( 4 ) in MeCN or DMF at room temperature yielded two regioisomeric tricyclic 1:1 adducts, the azacyclols 11/12 and 16/17 , respectively (Schemes 3 and 4). The structure of 12 was established by X-ray crystallography. Methanolysis of 11/12 and 16/17 led to mixtures of methyl [4, 4-dialkyl-5-(dimethylamino)-4H-imidazol-2-yl] pyridine carboxylates 13/14 and 18/19 , respectively. The structure of compound 14 is closely related to that of the powerful herbicide 9 (Scheme 9), i.e. the described reactions offer a new synthetic approach to this class of compounds. A mechanistic interpretation for the formation of regioisomeric 1:1 adducts as well as methyl (imidazol-2-yl) pyridine carboxylates is depicted in Scheme 5.  相似文献   

18.
Photochemical Reaction of Optically Active 2-(1′-Methylallyl)anilines with Methanol It is shown that (?)-(S)-2-(1′-methylallyl)aniline ((?)-(S)- 4 ) on irradiation in methanol yields (?)-(2S, 3R)-2, 3-dimethylindoline ((?)-trans- 8 ), (?)-(1′R, 2′R)-2-(2′-methoxy-1′-methylpropyl)aniline ((?)-erythro- 9 ) as well as racemic (1′RS, 2′SR)-2-(2′-methoxy-1′-methylpropyl) aniline ((±)-threo- 9 ) in 27.1, 36.4 and 15.7% yield, respectively (see Scheme 3). By deamination and chemical correlation with (+)-(2R, 3R)-3-phenyl-2-butanol ((+)-erythro- 13 ; see Scheme 4) it was found that (?)-erythro- 9 has the same absolute configuration and optical purity as the starting material (?)-(S)- 4 . Comparable results are obtained when (?)-(S)-N-methyl-2-(1′-methylallyl)aniline ((?)-(S)- 7 ) is irradiated in methanol, i.e. the optically active indoline (+)-trans- 10 and the methanol addition product (?)-erythro- 11 along with its racemic threo-isomer are formed (cf. Scheme 3). These findings demonstrate that the methanol addition products arise from stereospecific, methanol-induced ring opening of intermediate, chiral trans, -(→(?)-erythro-compounds) and achiral cis-spiro [2.5]octa-4,6-dien-8-imines (→(±)-threo-compounds; see Schemes 1 and 2).  相似文献   

19.
In a preceding communication [5] it was shown that 1, 5-dimethyl-6-methylene-tricyclo[3.2.1.02,7]oct-3-en-8-one ( 2 ) and related tricyclic ketones are converted by strong acids (CF3COOH, FSO3H) into polymethylated tropylium salts with loss of carbon monoxide, e.g. the 1, 2, 4-trimethyltropylium ion 4 from 2 (Scheme 1). Under the influence of neat formic acid at 20°, 2 gives rise to ring-methylated phenylacetic acids, i.e. 2, 4, 5-trimethylphenylacetic acid ( 5 , main product) as well as smaller amounts of 2, 4, 6-and 2, 3, 5-trimethylphenylacetic acids ( 6, 7 resp.; Scheme 2). –On rearrangement of 2 in HCOOD, ca. 2 D-atoms are incorporated (formula d2-5) into the 2, 4, 5-trimethylphenylacetic acid. The tricyclic 15 , containing 3 methyl groups, gives 2, 3, 5, 6-tetramethylphenylacetic acid ( 11 ; Scheme 4) with formic acid; the isomeric tricyclic 16 , 2, 3, 4, 5-tetramethylphenylacetic acid ( 12 ; Scheme 5). From 1, 2, 4, 5-tetramethyl-6-methylene-tricyclo[3.2.1.02,7]oct-3-en-8-one ( 17 ) one obtains pentamethylphenylacetic acid ( 14 ; Scheme 6). Similarly from 18 , a phenylacetic acid derivative, most probably 4-ethyl-2, 5-dimethyl-phenylacetic acid ( 19 ; Scheme 17), has been obtained. –In no case was the formation of α-phenylpropionic acid derivatives observed, not even from the tricyclic 23 containing six methyl groups. From the tricyclic ketone 2 in 70% formic acid a trimethyl-cyclohepta-2, 4, 6-triene-1-carboxyclic acid with partial formula 24 , besides 2, 4, 5-trimethylphenylacetic acid ( 5 ), is formed. 24 remained practically unchanged on standing in neat formic acid and thus does not represent an intermediate product arising by the rearrangement of 2 in that solvent. On standing in methanolic sulfuric acid, tricyclic 2 furnishes the two stereioisomeric methanol-addition products Z- 26 and E- 26 (Scheme 10); these are converted into the phenylacetic acids 5 , 6 and 7 by neat formic acid. The conversion of 2 and related compounds into ring-polymethylated phenylacetic acids, represents a novel and rather complicated reaction. In our opinion the reaction paths represented in Schemes 12 and 18 are responsible for the conversion of 2 into the trimethylphenylacetic acids, compound 40 representing a key intermediate. Analogous reaction paths can be assumed for the other tricyclic ketone transformations. The use of shift reagents in the NMR. spectroscopy and the high-resolution gas-chromatography of the corresponding methyl esters proved particularly important for the analysis of the reaction mixtures. The majority of the polymethylated phenylacetic acids were independently synthesised by means of the Willgerodt-Kindler reaction (chap. 3.2.), whose course is strongly influenced by methyl groups in the ortho-positions of the acetophenone derivatives employed.  相似文献   

20.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. III. A New Concept for the Synthesis of the Enantiomeric Astaxanthins A new and efficient concept for the total synthesis of (3S, 3'S)- and (3R, 3'R)-astaxanthin ( 1a and 1c , resp.) in high overall yield and up to 99,2% enantiomeric purity is described. Key intermediates are the (S)- and (R)-acetals 10 and 17 , respectively (Scheme 2). These chiral building blocks were synthesized via three different routes: a) functionalization of the enantiomeric 3-hydroxy-6-oxo-isophorons4) 2 and 11 , respectively (Scheme 2); b) optical resolution of 3,4-dihydroxy-compound4) 19 (Scheme 3), and c) fermentative reductions of 6-oxo-isophorone derivatives (Schemes 4 and 5). - The absolute configurations of the two intermediates 12 and 13 (Scheme 2) have been confirmed by X-ray analysis. - The final steps leading to the enantiomeric astaxanthins are identical with those described for optically inactive astaxanthin [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号