首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co6(μ3—Se)6 (PEt3)6·THF, MW = 1766.4, space group R3 , has the trigonal parameters, a= 11.890(2)° Å, α = 92.72(2)°, V = 1670.4 Å3, Z = 1. Mo Ka radiation, λ = 0.71073 Å, Dc = 1.749 g/cm3, μ = 59.18 cm?3, F(000) = 870, R = 0.058 and Rw= 0.067 for 1529 observed unique reflections with I>3α(I). The molecular structure consists of an idealized octahedral Co4—core. The Co—Co distances fall in the range of 2.909—2.912 Å.  相似文献   

2.
The crystal structures of Co3[Co(CN)6]2, 12 H2O (a, = 10.210 ± 0.005 Å) and Cd3[Co(CN)6]2, 12 H2O (a = 10.590 ± 0.005 Å) have been determined by X-ray powder methods. According to the measured density the unit cell contains 1 1/3 formula units with 4 Co2+ (Cd2+) in 4a, 2 2/3 Co3+ in 4b, 16 C and 16 N in 24e, 8 H2OI near 24e, (96k) and 8 H2OII near 8 c (192 l). Structure factor calculations based on the space group Oh5 - F m 3 m lead to the following final values of the reliability index R: 0.038 (Co3[Co(CN)6]2, 12 H2O) and 0.037 (Cd3[Co(CN)6]2, 12 H2O). The interatomic distances for the cobaltous compound (in parentheses for the cadmium compound) are: Co3+-C: 1.88 Å (1.89); C-N: 1.15 Å (1.17); Co2+-N: 2.08 Å (2.24); Co2+-OI: 2.10 Å (2.27); shortest OI-H-OII-bonds: 2.89 Å (2.82). Co3+ is octahedrally coordinated by six carbon atoms, the divalent metal ion by four nitrogen atoms and two water molecules. The two different metal ions are connected by M2+-N-C-Co3-bonds to a threedimensional network. The infrared and electronic spectra are shown to be in agreement with the results of the structure analyses of these compounds. The observed positions of the OH-stretching vibrations lead to a hydrogenbond-length of 2.8–2.95 Å.  相似文献   

3.
The crystal and molecular structure of the complex containing cobalt-carbon and iron-sulfur cluster cores, (μ-p-CH3C6H4C2S) (μ-n-C3H7S)Fe2(CO)6Co2(CO)6, has been determined by X-ray diffraction method. The crystals are triclinic, space group P&1bar;, with a — 9.139(2), b=9.610(1), c-17.183(2) Å, α = 84.36(1), β-89.45(1), γ=88.15(1)°, V-1501.0 Å3; Z=2, Dc=1.74 g/cm3. R=0.072, Rw=0.081. The results of the structure determination show a cobalt-carbon cluster core formed through the reaction of (μ-p-CH3C6H4C2S)(μ-n-C3H7S)Fe2(CO)6 with Co2(CO)8. In the cobalt-carbon cluster core, the bond length of the original C≡C lengthened to 1.324 Å which is close to the typical value of carbon-carbon double bond. The groups connecting the carbons of the cluster core are in cis position and lie on the opposite side of cobalt atoms. In this complex, the conformation of —SC3H7 is e-type, while that of —SC2C6H4CH3 is a-type.  相似文献   

4.
[V_2(μ-S_2)_2(S_2CNEt_2)_4].2CH_3Cl was synthesized by the reaction of NaS_2CNEt_2,Li_2S andVOCl_3 at room temperature.Crystal data:M=1061.3,space group Pbca,with the orthorhombicparameters:a=20.123(3),b=20.485(4),c=10.911(3),V=4497.7,Z=4,D_c=1.57g/cm~3,Mo Kσradiation(λ=0.71069()?),μ=13.2 cm~(-1),F(000)=2168.Final R=0.041 and R_w=0.047 for 2288 ob-served reflections with I>3σ(1).The coordination sphere of each V atom in title compound is a dis-torted tetragonal prism composed of two bidentate dithiocarbamate and two S_(2~((2-)) ligands.The V—Vdistance is 2.890 while the V—S distances fall in the range of 2.422—2.505.  相似文献   

5.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

6.
Title compound, Mr =1273.16, was synthesized by a substitution reaction and its crystal is triclinic belonging to space group P1 with cell parameters: a =13.944(2), b =14.143(7), c =14.233(3) Å, α =77.35(3)°, β =69.94(2)°, γ =63.50(3)°, V=2351(1) Å3, Z=2, Dc =1.799g cm?2. Room temperature, graphite-filtered Mo Kα radiation (λ =0.71073Å) was used for data collection. μ =14.988 cm?1, F(000) =1280, R=0.051 for 7025 observed reflections. The crystal consists of decrete cluster molecules containing a cluster core [Mo23-S)]10+ with three μ-S, one μ-dtp(dtp =[S2P(OC2H5)]2-), three χ-dtp and one allylthioureo to form a local six-coordinated sphere around each Mo atom. The bonds of cluster skeleton [Mo3(μ3-S)(μ-S)3]4+, Mo? Mo 2.744~2.766, Mo—(μ2-S) 2.340~2.342 and Mo—(μ-S)2.272~2.296 Å, are comparable with those found in the related analogues.  相似文献   

7.
Compounds [(Ph3P)2AgS2CSR (R = But, TIPT(2,4,6-triisopropylthiophenolato))], formed by inserting CS2 into the Ag–S bond in AgSR in the presence of PPh3, react with CH2I2 to give pale yellow crystals of (Ag5I6)n(Ph3PCH2I)n, which consist of the polymeric anion (Ag5I6)n and the cation (Ph3PCH2)+. The polyanion (Ag5I6)n is composed of alternate I5-pentagons and Ag5-pentagons that are connected by Ag–I bonds along the C axis to form a layered “pagoda” structure, in which there exists an unusual stereochemistry of iodine. Crystal data: monoclinic, space group P21/c, a = 15.004(12) Å, b = 27.19(2) Å, c = 7.898 Å, β = 97.18(5)°, V = 3205(4) Å3, Z = 4, R = 0.0673 for 2726 observed reflections.  相似文献   

8.
The crystal structure of 2-(2,4-dimethylanilino)-3-methyl-6-diethylaminofluorane has been determined by single crystal X-ray diffraction method. The crystal belongs to triclinic system, space group P-1 with unit cell constants a = 11.2877(9) Å, b = 11.9539(9) Å, c = 12.2365(9) Å, α = 97.2580(10)°, β = 116.2850(10)°, γ = 106.3710(10)°, V = 1358.48(18) Å 3, Z = 2, D c = 1.234 g/cm3, μ = 0.079 mm?1, F(000) = 536, R and w(R) are 0.0718 and 0.2055, respectively, for 5239 unique reflections with 3745 observed reflections (I > 2σ(I)).  相似文献   

9.
《Polyhedron》1999,18(8-9):1135-1140
The preparation of several new gold(I) complexes by chloride metathesis of [AuCl(HL)] [HL=Ph2PNHP(O)Ph2] with either HL or K[Ph2P(E)NP(E)Ph2] (E=S or Se) is described. All compounds were characterised by a combination of 31P{1H}, 1H and IR spectroscopy, microanalysis and X-ray crystallography. X-ray structural studies reveal that [Au(HL)2]Cl [monoclinic, space group P21/c, a=9.0726(3) Å, b=21.0847(6) Å, c=12.0131(3) Å, β=105.1090(10)°, V=2219 Å3, Z=2, final R=3.97] forms a one dimensional polymeric structure in which alternating [Au(HL)2]+ and Cl ions are linked through intermolecular N–H⋯Cl hydrogen-bonding. In contrast the three-co-ordinate compound [Au{Ph2P(Se)NP(Se)Ph2-Se,Se′}(HL)] [monoclinic, space group P21/a, a=21.6752(5) Å, b=9.1200(10) Å, c=24.0742(7) Å, β=106.080(2)°, V=4573 Å3, Z=4, final R=8.94] forms hydrogen-bonded dimer pairs analogous to that previously observed in non-complexed HL. The X-ray crystal structure of the gold(I) precursor [AuCl(HL)] has also been determined: monoclinic, space group P21/c, a=10.217(8) Å, b=23.256(5) Å, c=20.086(5) Å, β=101.15(4)°, V=4683 Å3, Z=8, final R=5.2. The X-ray crystal structure reveals intermolecular N–H⋯OP hydrogen-bonding between adjacent [AuCl(HL)] molecules forming infinite chains.  相似文献   

10.
The reaction of Mo(0) complex [Mo(CO)4(S2CNEt2)]- with phenthiolate [Et4N]SΦ in acetonitrile in the presence of small amount of air affords a new oxo-molybdenum complex [MoO(SΦ)2(S2CNEt2)], which crystallizes in two forms of crystals. [Et4N][MoO(SΦ)2Φ(S2CNEt2)] (1a) and [Et4N][MoO(SΦ)2(S2CNEt2)]Φ(CH3)2CHOH (1b). The structures of 1a and 1b were determined from three-dimensional X-ray data. 1a crystallizes in the monoclinic, space group Ce with a=12.321(4), b=15.245(4), c=16.087(9)Å; β= 98.44(4)Φ, V=2989Å3, Z=4, Dc = 1.35g/cm3 and R=0.031 for 2434 reflections [I>36(I)]. 1b crystallizes in the monoclinic space group F21/n with a=9.861(1), b=20.357(3), c=17.122(5)Å; β= 92.27 (2)*, V=3434.3Å3, Z=4; De = 1.29g/cm3 and R= 0.051 for 2852 independent reflections [I>3σ(I)]. The structures of 1a and 1b reveal that the anion [MoO(SΦ)2(S2CNEt2)]- contains a single oxo ligand coordinating to a molybdenum(IV) and the geometry around Mo(IV) atom is a distorted square pyramid. Interestingly, the solvate molecule isopropanol of 1b is linked to oxo group by a hydrogen-bond of 1.928Å, leading to the increase of Mo?O bond distance (1.718Å). Mo—S distances are 2.44 and 2.39Å. The electrochemical behavior of 1 was discussed also.  相似文献   

11.
The title compound was prepared by the reaction of Mo_3S_4(dtp)_4(H_2O)[ctp=S_2P(OEt)_2]with NaOAc·3H_2O and C_4H_8NCS_2NH_4.Crystallographic data:[Mo_3(μ_3-S)(μ-S)_2(μ-OAc)-(S_2CNC_4H_8)_3(O)_2]·0.5CH_2CI_2·2H_2O,Mr=980.18,triclinic,space group P,α=12.360(3),b=16.653(6),c=9.206(2)A,α=101.97(2),β=108.32(2),γ=86.14(3)°.V=1759.6(9)A~3,Z=2,Dc=1.85 g/cm~3,F(000)=962,μ(Mo K_α)=16.53 cm~(-1).Final R=0.044 for 4301 reflections with I≥3σ(I).This compoundmay be regarded as a mixed-valent trinuclear molybdenum cluster{Mo_2(V)Mo(Ⅳ)(μ_3-S)(μ-S)_2-(μ-OAc)(S_2CNC_4H_8)_3(O)_2}.The Mo-Mo distances are 2.783(1),2.833(1)and 3.374(2)A in the Mo_3non-equilateral triangle and there exist only two Mo-Mo bonds.The cluster was obtained by oxi-dation and ligand substitution of{Mo_3(μ_3-S)(μ-S)_3[μ-S_2P(OEt_2)][S_2P(OEt)_2]_3(H_2O)}.  相似文献   

12.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

13.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

14.
Abstract

The reaction of two equivalents of NaSH with MCl2(dmpe)2 (M = Cr, Fe,) at—78°C gives trans-M(SH)2(dmpe)2 (M = Cr, (1), 30%; Fe, (2) 98%). The complexes have been characterized spectroscopically, and the trans geometry has been confirmed by single crystal X-ray diffraction studies. Crystal data (1): C12H34CrP4S2, M= 418.42, monoclinic, P21/n, a = 8.857 (I), b= 12.719 (2), c = 9.648 (I) Å, β = 92.14(1)°, U= 1086.2 (5)Å, D c = 1.279gcm?3, Z = 2, λ(MoKa) = 0.71073 Å, (graphite mono-chromator), μ(MoKa) = 9.80cm?1. Methods: MULTAN, difference Fourier, full-matrix least-squares. Refinement of 1149 reflections (I > 3σ(I)) out of 1901 unique observed reflections (3.0° < 29 < 48.0°) gave R and R w values of 0.092 and 0.096, respectively. Crystal data (2): C12H34FeP4S2, M = 422.28, monoclinic, P21/n, a = 8.834 (2), b = 12.594 (2), c = 9.532 (2) Å, β = 90.66 (2)°, U = 1060.3 (5) Å3, D c = 1.323 g cm?3, Z = 2, γ(MoKa) = 0.71073 Å, (graphite monochromator), μ(MoKa) = 11.87 cm?1. Methods: same as for (1). Refinement of 1178 reflections (I > 3σ (I)) out of 2086 unique observed reflections (2.0° < 20 < 50.0°) gave R and R w values of 0.056 and 0.059, respectively.  相似文献   

15.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

16.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

17.
[Mo3,OS3(dtp)4(H2O)] reacts with NaOAc·3H2O in Py to give the title compound. The crystal data are as follows: [Mo2OS3)(OAc)2(dtp)2·Py]?0.5H,O(dtp = [S3P(OC2H5)2]?, Py = C5H5N); M = 976.64; triclinic; space group P1 ; a=11.704(5), b=14.169(7), c= 11.688 (5) Å α=109.94(4) β = 91.53(4), γ = 91.93(4)°; V= 1819(1) Å2; Z=2; Dc = 1.78 g·cm?3 λ(Mo Kα) = 0.71069 Å μ=15.15 cm?1; F(000) = 970 T=296 K; final R=0.071 for 1652 reflections with I>3σ(I). In the molecule, the [Mo3OS3] core is surrounded by two bridging OAc groups and two terminal chelate dtp groups attached to the {Mo3} triangle in a symmetric style, and the Py ligand is coordinated to the Mo atom at the apex of {Mo3} triangle with the nitrogen. This novel configuration is obtained for the first time with Mo—N bond length being 2.27 (2) Å and three Mo—Mo bond lengths 2.584 (4), 2.587 (4) and 2.657(4) Å, respectively. As a whole, the molecule has a virtual C2 symmetry.  相似文献   

18.
One binuclear complex [Co(bpm*)2(dca)]2(ClO4)2 ( 1 ) and two 1D chain CoII complexes, {[Co(bpm)2(dca)](ClO4)}n ( 2 ) and [Co(dmf)2(dca)2]n ( 3 ), (bpm*: bis[(3, 5‐dimethyl)pyrazolyl]methane; bpm: bis(pyrazolyl)methane; dca: dicyanamide; dmf: N, N‐dimethyl formamide) have been prepared and structurally characterized. The cobalt atoms are hexa‐coordinated forming a slightly distorted octahedral coordination. Compound 1 crystallizes in the monoclinic system, space group P21/c, a = 9.849(3)Å, b = 21.944(7)Å, c = 13.814(5)Å, β = 94.824(6), Z = 4, R1 = 0.0672, wR2 = 0.1395. 1 is a binuclear complex linked by two dca ligands, and each CoII ion is coordinated by two terminal bpm* ligands. Compound 2 crystallizes in the orthorhombic system, space group Cmcm, a = 10.377(4)Å, b = 13.594(5)Å, c = 15.999(6)Å, Z = 4, R1 = 0.0609, wR2 = 0.1328. The structure of 2 can be described as a one‐dimensional zigzag chain of CoII ions bridged by one dca ligand. Each CoII ion in the chain is coordinated by two bpm ligands. Compound 3 crystallizes in the monoclinic system, space group C2, a = 13.559(15)Å, b = 7.393(8)Å, c = 8.110(9)Å, β = 112.228(15), Z = 2, R1 = 0.0260, wR2 = 0.0760. 3 has a one‐dimensional linear chain of CoII ions bridged by two dca ligands, in which each CoII ion is coordinated with two dmf molecules.  相似文献   

19.
The monomeric octa-aza bis-α-diimine macrocyclic complex [CoII(C10H20N8)(H2O)](ClO4)2 I, undergoes various reactions on the macrocyclic ligand. Reaction of complex I with triethylamine in double molar proportions, followed by slow aerial oxidation, produces a molecular dimeric complex [CoII(C10H14N8)]2, III, and a novel Co(I) complex [CoI(C10H19N8)], IV. Complex III is a staggered cofacial dimer with a cobalt-cobalt bond length 2.86(1) Å. The macrocyclic ligand of the complex contains an a-diimine function in each five-membered chelate ring, and a three-atom N-C-N? delocalized system in each six-membered chelate ring. Complex IV has the 5-5-6-6 chelate arrangement because one α-diimine moiety is rearranged to a syn-anti configuration. In the structure, the two fused six-membered chelate rings are fully conjugated and the two fused five-membered rings are saturated. However, when complex I reacts with excess triethylamine under the similar conditions, a dimeric complex of another type, [CoII(C10Hl6N8)]2, II, was generated, in which one N-N bond of the macrocyclic ligand is broken. Complex IV can be isolated also from the reaction of complex I with excess hydrazine, followed by slow aerial oxidation. When hydrazine in double molar proportions was used, complex [CoI(C10H17N8)(NHNH)] V, which contains a coordinated diazene ligand, was obtained. Only one six-membered chelate ring of complex V is deprotonated and oxidized to form a three-atom N-C-N? delocalized system. The structures of octa-aza complexes I-V are determined by X-ray crystallography: I, orthorhombic, C mca, a = 11.646(4), b = 17.049(3), c = 10.706(3) Å, Z = 4, R = 0.045, Rw = 0.047, based on 1024 reflections with I > 2σ(I); II, monoclinic, P 21/c, a = 9.814(3), b = 22.583(6). c = 14.632(9) Å, β = 98.90(5)°, Z = 4, R = 0.085, Rw = 0.101, based on 2033 reflections with I > 2σ(I); III, tetragonal, P 4/nmm, a = 15.614(3), c = 6.498(2) Å, Z = 4, R = 0.081, Rw = 0.115, based on 340 reflections with I > 2σ(I); IV, orthorhombic, P bca, a = 8.484(1), b = 16.662(3), c = 18.760(2) Å, Z = 8, R = 0.029, Rw = 0.024, based on 1441 reflections with I > 2σ(I); V, monoclinic, P 21/m, a = 7.892(3), b = 11.713(6), c = 9.326(4) Å, β = 108.03(3), Z = 2, R = 0.047, Rw = 0.056, based on 948 reflections with I > 2σ(I).  相似文献   

20.
The crystal structure of the title compound has been determined from 6049 X-ray diffractometric intensities with I > 3σ(I), and refined by a least-squares procedure to R = 0.050. The crystals are monoclinic, space group P21/n, a = 13.702(2) b = 14.255(2), c = 39.556(6) Å, β = 94.75(1)°, Z = 4. The structure of the cation displays two different coordination modes of the Ph2PCH2PPh2 ligands. Two of these are bidentate, bridging the Pt-Pt bond [2.769(1)Å] to form a Pt2(μ-Ph2PCH2PPh2)2 nucleus, while the third acts as a monodentate two-electron donor. The hydrido ligand was not located, but its position is inferred from the coordination geometry of the platinum atom to which it is bonded. The metalligand distances are: Pt-P(trans to P) 2.248(3)–2.289(4) and Pt—P(trans to Pt) 2.347(4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号