首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic segmented polyetherurethanes were prepared from methylene diphenylene diisocyanate (MDI), poly(ethylene glycol) 1500 (PEG), and a fatty acid monoglyceride as a chain extender. The polymers were not soluble in water or methanol, but dissolved readily in organic solvents. The amphiphilic properties were demonstrated as a large hysteresis in the water contact angles, exceeding 110°. The amphiphilic polymers were shown to modify the surface properties of a poly(ether urethane) (PEU) and a poly(ether urethane urea) (PEUU) when added in 1–10 wt %, presumably due to migration of the additive to the surface. The surfaces of particularly the PEU blends became highly amphiphilic, exhibiting contact angles hystereses up to 90–100°. A surface saturation effect was observed at 5% added amphiphilic polymer. A difference in the behavior of PEU and PEUU was ascribed to differences in solubility of the additive in the matrix. On long-term exposure to water the PEUU blends increased their amphiphilic behavior.  相似文献   

2.
3.
Modification of fluorine-containing polymers has recently received much attention due to new chemistries allowing for refunctionalization of these materials, especially their surfaces. In this article results are discussed which demonstrate various interesting modifications (including incorporations of ? OH and oxygen comprised functionality) to expanded poly(tetrafluoroethylene) (ePTFE) surfaces. This is effected through the use of low damage, radio frequency glow discharge (RFGD) processes. The low damage conditions, which preserve the original pore structure/morphology of these RFGD treated materials, are supported by Scanning Electron Microscopy (SEM) while the resulting atomic and molecular effects are investigated through other surface analytical methodology. All materials reported in this investigation have been subjected to intensive structural analyses utilizing Electron Spectroscopy for Chemical Analysis (ESCA), Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR–FTIR), and wettability profiles obtained through contact angle measurements using a large series of liquids having varying surface tensions and surface reactive functionality. Through this multitechnique analysis of both expanded PTFE and poly(vinylidene fluoride) (PVDF) treated surfaces, a model is supported which illustrates surfaces possessing both high and low energy regions comprising both oxygen and fluorine functionality in close molecular proximity.  相似文献   

4.
The optical absorption spectrum of small lithium clusters has been measured up to Li8. In Li3 high resolution Two Photon Ionization (TPI) spectra have been recorded allowing us to determine the geometry and potential surfaces of the ground and excited states. In larger clusters, the excited states are dissociative and the absorption spectra have been obtained by Depletion Spectroscopy. Vibronic resolution is still achieved in Li4, but not in larger clusters. The measured spectra exhibit a rather small number of transitions to electronically excited states. In Li7, only one intense band is observed in the blue region, while in Li8, an intense band is also observed in the blue region and a much weaker band in the red region. All the obtained results are in very good agreement with the ab initio calculation of Bonacic-Koutecky et al. This demonstrates that molecular effects are always present in these small clusters. The semi-classical models of surface plasma resonances are also discussed.  相似文献   

5.
Poly(ethylene terephthalate) (PET) film surfaces were modified by argon (Ar), oxygen (O2), hydrogen (H2), nitrogen (N2), and ammonia (NH3) plasmas, and the plasma‐modified PET surfaces were investigated with scanning probe microscopy, contact‐angle measurements, and X‐ray photoelectron spectroscopy to characterize the surfaces. The exposure of the PET film surfaces to the plasmas led to the etching process on the surfaces and to changes in the topography of the surfaces. The etching rate and surface roughness were closely related to what kind of plasma was used and how high the radio frequency (RF) power was that was input into the plasmas. The etching rate was in the order of O2 plasma > H2 plasma > N2 plasma > Ar plasma > NH3 plasma, and the surface roughness was in the order of NH3 plasma > N2 plasma > H2 plasma > Ar plasma > O2 plasma. Heavy etching reactions did not always lead to large increases in the surface roughness. The plasmas also led to changes in the surface properties of the PET surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surfaces decreased. Modification reactions occurring on the PET surfaces depended on what plasma had been used for the modification. The O2, Ar, H2, and N2 plasmas modified mainly CH2 or phenyl rings rather than ester groups in the PET polymer chains to form C? O groups. On the other hand, the NH3 plasma modified ester groups to form C? O groups. Aging effects of the plasma‐modified PET film surfaces continued as long as 15 days after the modification was finished. The aging effects were related to the movement of C?O groups in ester residues toward the topmost layer and to the movement of C? O groups away from the topmost layer. Such movement of the C?O groups could occur within at least 3 nm from the surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3727–3740, 2004  相似文献   

6.
PVDF/(PEI‐C/PAA)n functional membranes were prepared by layer‐by‐layer (LbL) assembly, and their heavy metal ions adsorption capability was investigated. The changes in the chemical compositions of membrane surfaces were determined by X‐ray photoelectron spectroscopy (XPS). XPS results show that the surface of the PVDF membrane can be alternatively functionalized by PEI‐C and PAA. The membrane surface hydrophilicity was evaluated through water contact angle measurement. Contact angle results show that the surface hydrophilicity of the membrane surface depends on the outermost deposited layer. Morphological changes of membrane surfaces were observed by scanning electron microscopy (SEM). The water fluxes for these membranes were elevated after modification. The performances of the PVDF/(PEI‐C/PAA)n membranes on the adsorption of copper ions (Cu2+) from aqueous solutions were investigated by inductively coupled plasma (ICP). The results indicate that the PVDF/(PEI‐C/PAA)n functional membranes show high copper ions adsorption ability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, cyclic olefin copolymer (COC)/layered silicate nanocomposites (CLSNs) were prepared by the intercalation of COC polymer into organically‐modified layered silicate through the solution mixing process. Both X‐ray diffraction data and transmission electron microscopy images of CLSNs indicate most of the swellable silicate layers were disorderedly intercalated into the COC matrix. The effect of layered silicate on the mechanical and barrier properties of the fabricated nanocomposites shows significant improvements in the storage modulus and water permeability when compared with that of neat COC matrix. Surfaces of COC and CLSN films were modified by a mixture of oxygen (O2) and nitrogen (N2) plasmas with various treated times, system pressures, and radio frequency (RF) powers. The surfaces of plasma‐modified COC and CLSN were investigated using scanning probe microscopy and contact‐angle measurements. The exposure of the COC and CLSN film to the plasmas led to the combination of etching reactions of polymer surface initiated by plasma and the following addition reactions of new functional groups onto polymer surfaces to change the topology of COC film surfaces. The surface roughness was closely related to how high and how long the RF power was input into the system. The plasmas also led to changes in the surface properties of the CLSN surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surface decreases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2745–2753, 2005  相似文献   

8.
This work deals with the optimization of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) films in order to obtain surfaces with a reduced protein adsorption for possible biomedical applications. To this end, we examined the protein adsorption on the treated and untreated surfaces. The graft-polymerization process consisted of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. The efficiency of these processes was evaluated in terms of the amount of grafted polymer, coverage uniformity and substrates wettability. The process was monitored by contact angle measurements, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in Phosphate Buffer Saline (PBS) at 37 °C. The adsorption of fibrinogen and green fluorescent protein (GFP) – taken as model proteins – on the differently prepared surfaces was evaluated through a fluorescence approach using laser scanning confocal microscopy with photon counting detection. After plasma treatments of short duration, the protein adsorption decreases by about 60–70% with respect to that of the untreated film, while long plasma exposure resulted in a higher protein adsorption, due to damaging of the grafted polymer.  相似文献   

9.
The plasma treatment of polymer surfaces is routinely used to enhance surface properties prior to adhesive bonding or biomolecule interaction. This study investigates the influence of plasma treatment conditions on the surface activation of polyethylene terephthalate (PET) using the SurFx Atomflo? 400L plasma source. In this study the effect of applied plasma power, processing speed, gas composition and plasma applicator nozzle to substrate distance were examined. The level of polymer surface activation was evaluated based on changes to the water contact angle (WCA) of PET samples after plasma treatment. PET surface properties were also monitored using surface energy and X-ray photoelectron spectroscopy (XPS) analysis. The heating effect of the plasma was monitored using thermal imaging and optical emission spectroscopy (OES) techniques. OES was also used as a diagnostic tool to monitor the change in atomic and molecular species intensity with changes in experimental conditions in both time and space. XPS analysis of the PET samples treated at different plasma powers indicated that increased oxygen content on samples surfaces accounted for the decreases observed in WCAs. For the first time a direct correlation was obtained between polymer WCA changes and the OES measurement of the atomic hydrogen Balmer Hα and molecular OH line emission intensities.  相似文献   

10.
The interaction of H2O with 0.013 at.% Fe‐doped SrTiO3(100) was investigated in situ with Metastable Induced Electron Spectroscopy (MIES), Ultraviolet Photoelectron Spectroscopy (UPS) and XPS at room temperature. Low Energy Electron Diffraction (LEED) was applied to gather information about the surface termination. To clear up the influence of surface defects, untreated and weakly sputtered SrTiO3 surfaces were investigated. The sputtering results in the formation of oxygen‐related defects in the top surface layer. The interaction of untreated SrTiO3 surfaces with H2O is only weak. Small amounts of OH groups can be identified only with MIES due to its extreme surface sensitivity. Sputtered surfaces show a larger OH formation. Nondissociative H2O adsorption is not observed. We therefore conclude that the exposure of H2O to SrTiO3(100) results in the dissociation near surface defects only, resulting in the formation of surface hydroxyl groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
There is a high interest in improving the hydrophilicity of polymer surfaces due to their wide use for technological purposes. In this study Ultra High Molecular Weight Polyethylene (UHMWPE) as a biocompatible material was bombarded with 1 MeV He ions to the fluences ranging from 1×1013 to 5×1014 cm?2. The pristine and ion beam modified samples were investigated by photoluminescence (PL), ultraviolet–visible (UV–vis) spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The changes of wettability and surface free energy were determined by the contact angle measurements. The obtained results showed that the ion bombardment induced decrease in integrated luminescence intensity and decrease in the transmittance with increase of ion fluence as well. This is might be attributed to degradation of polymer surface and/or creation of new electronic levels in the forbidden gap. The FTIR spectral studies indicate that the ion beam induces chemical modifications within the bombarded UHMWPE. Formation of carbonyl groups (C=O) on the polymer surface was studied. Direct relationship of the wettability and surface free energy of the bombarded polymer with the ion fluences was observed.  相似文献   

12.
Fluorinated thin layers were created on chemithermomechanical pulp (CTMP) sisal paper surfaces with fluorotrimethylsilane (FTMS) radio frequency-plasma conditions. It was found that the FTMS-discharge environments caused implantation of fluorine and –Si(CH3) x groups into the surface layers of the paper substrates. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and Electron Spectroscopy for Chemical Analysis, as well as Atomic Force Microscopy and Scanning Electron Microscopy analyses revealed a smooth surface for the FTMS plasma-treated paper, apparently covered completely with a cross-linked polymerized network. Although the plasma reaction takes place with the cellulose, hemicelluloses and lignin, it appears that the chemical linkage is mainly to the lignin component on the CTMP paper surface by means of mainly C–O–Si–F, with some C–Si–F structures. The CTMP fibers apparently have a high lignin surface concentration. The water absorption for the plasma-treated CTMP paper was reduced from greater than 300 to 17 g of water/m2 and the contact angle increased from less than 15° to greater than 120° the strength properties were only slightly reduced and the brightness was essentially unaffected with the FTMS plasma treatment.  相似文献   

13.
RGD改性聚醚氨酯及其内皮细胞相容性的研究   总被引:2,自引:0,他引:2  
利用氢键稳定的溶液互穿技术对聚醚氨酯(PEU)进行改性.用ATR-FTIR对十八烷基-聚氧乙烯-4,4'-二苯甲烷二异氰酸酯-聚氧乙烯-十八烷基(MSPEO)与PEU共混膜表面进行研究,结果表明,MS-PEO中的氨基甲酸酯链段与PEU基材之间发生了氢键缔合的作用.通过水化处理PEO及十八烷基自发地富集在基材表面.根据氢键缔合和表面自迁移原理,设计了两种RGD改性聚醚氨酯的方法:(1)将含RGD端基的聚氧乙烯-4,4'-二苯甲烷二异氰酸酯-聚氧乙烯偶联物(MPEO-RGD)与PEU进行共混改性,利用RGD端基及PEO的自迁移特性获得RGD富集的表面;(2)将含甲磺酸酯端基的聚氧乙烯-4,4'-二苯甲烷二异氰酸酯-聚氧乙烯偶联物(MPEO-mesyl)与PEU共混成膜,并对膜片进行水化处理,使甲磺酸酯端基富集在PEU表面,浸泡于RGD的PBS溶液中,在膜片表面成功地原位接枝了RGD.对两种RGD改性方法获得的表面进行了内皮细胞的培养,结果表明,两种改性方法均大大提高了PEU的细胞相容性,其中方法(1)共混改性的表面细胞相容性略优于方法(2)的接枝改性表面.  相似文献   

14.
The influence of Ar/O2 plasma activation and chromic acid etching of polycarbonate (PC) surface on the adhesion of coating to substrate was systematically studied by cross‐cut and tape peel methods through temperature‐shock aging tests. The differences between the wettabilities and elemental compositions of plasma‐treated and chromic acid‐treated PC surfaces prior to coating deposition were evaluated by contact angle measurements and X‐ray photoelectron spectroscopy. To elucidate the adhesion failure of the coatings, nanoindentation technique was employed for the quantitative assessment of the nanomechanical changes of coating depositions on PCs after temperature‐shock aging tests. The two surface treatments can significantly improve the hydrophilicity and polarity of the PC surface, resulting in excellent adhesion of the coating on the PC substrate. Temperature‐shock aging tests reveal that the adhesion of coating on plasma‐modified substrates is superior to that of chromic acid‐etched substrates. We propose that the improved adhesion of the coating on the plasma‐modified PC can be attributed to the higher wettability and more cross‐linking of C–O–Si bonds at the coating–substrate interface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we have studied superhydrophilic and superhydrophobic transitions on the vertically aligned multiwalled carbon nanotube (VACNT) surfaces. As-grown, the VACNT surfaces were superhydrophobic. Pure oxygen plasma etching modified the VACNT surfaces to generate superhydrophilic behavior. Irradiating the superhydrophilic VACNT surfaces with a CO2 laser (up to 50?kW?cm?2) restored the superhydrophobicity to a level that depended on the laser intensity. Contact angle and surface energy measurements by the sessile drop method were used to examine the VACNT surface wetting. X-ray photoelectron spectroscopy (XPS) showed heavy grafting of the oxygen groups onto the VACNT surfaces after oxygen plasma etching and their gradual removal, which also depended on the CO2 laser intensity. These results show the great influence of polar groups on the wetting behavior, with a strong correlation between the polar part of the surface energy and the oxygen content on the VACNT surfaces. In addition, the CO2 laser treatment created an interesting cage-like structure that may be responsible for the permanent superhydrophobic behavior observed on these samples.  相似文献   

16.
We have prepared an amphiphilic oxazoline block copolymer of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly[2-(2-perfluorooctyl)ethyl-2-oxazoline] chains. By controlling the length and composition of polymer chains, we found that this fluorinated block copolymer can be readily dissolved in water. Furthermore, we can achieve a stable surface coating of the fluorinated block copolymer by dissolving the copolymer in water, then coating the aqueous copolymer solution onto surfaces of nonwater-soluble polymers. This is a simple and useful method of modifying the surface character of polymer substrates. We have found that the polyether urethane (PEU) coated by block copolymer has a different surface chemistry and biological reactivity than the uncoated PEU. From XPS analysis, we found the fluorinated copolymer was coated on PEU (atomic % of F: 31.3 on coated PEU, 0.3 on uncoated). The two surfaces have different affinities for biological molecules. Specifically, the fibrinogen adsorption on the fluorinated copolymer-coated PEU was 62 ± 39 ng/cm2, compared to a value of 156 ± 99 ng/cm2 for uncoated PEU. In an ex vivo evaluation of platelet adhesion, the surface of coated PEU attached a few white cells while uncoated PEU was covered with activated platelets. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
In this work, low pressure glow discharge O2 plasma has been used to increase wettability in a LDPE film in order to improve adhesion properties and make it useful for technical applications. Surface energy values have been estimated using contact angle measurements for different exposure times and different test liquids. In addition, plasma-treated samples have been subjected to an aging process to determine the durability of the plasma treatment. Characterization of the surface changes due to the plasma treatment has been carried out by means of Fourier transformed infrared spectroscopy (FTIR) to determine the presence of polar species such as carbonyl, carboxyl and hydroxyl groups. In addition to this, atomic force microscopy (AFM) analysis has been used to evaluate changes in surface morphology and roughness. Furthermore, and considering the semicrystalline nature of the LDPE film, a calorimetric study using differential scanning calorimetry (DSC) has been carried out to determine changes in crystallinity and degradation temperatures induced by the plasma treatment. The results show that low pressure O2 plasma improves wettability in LDPE films and no significant changes can be observed at longer exposure times. Nevertheless, we can observe that short exposure times to low pressure O2 plasma promote the formation of some polar species on the exposed surface and longer exposure times cause slight abrasion on LDPE films as observed by the little increase in surface roughness.  相似文献   

18.
Polystyrene (PS) spin coated thin films were modified by O2 and Ar plasma as well as by UV irradiation treatments. The modified PS samples were compared with plasma polymerized and commercial polystyrene. The effects of plasma (O2 and Ar) and UV irradiation treatments on the surface and the bulk properties of the polymer layers were discussed. The surface properties were evaluated by X-ray Photoelectron Spectroscopy and Contact angle measurements and the bulk properties were investigated by FTIR and dielectric relaxation spectroscopy. As a result only one second treatment time was sufficient to modify the surface. However, this study was also dedicated to understand the effect of plasma and plasma irradiation on the deposited layers of plasma polymers. The dielectric measurements showed that the plasma deposited films were not thermally stable and underwent an undesired post-plasma chemical oxidation.  相似文献   

19.
The surface modification of polyethylene (PE) by neutral nitrogen species (ground and excited state N2 as well as atomic N; modified nitrogen plasma treatment) has been compared to the effect of nitrogen ion bombardment using X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements. XPS results indicate that a greater nitrogen concentration was grafted during the modified nitrogen plasma treatment of PE, an effect that was attributed to surface sputtering during ion beam modification. The distribution of nitrogen-containing functionalities was strongly dependent upon the treatment strategy; the modified nitrogen plasma treatment lead predominantly to imine groups being formed at the PE surface, while amine groups were the dominant species produced during ion beam modification. The presence of electron irradiation during the modified nitrogen plasma treatment of PE did not modify the rate of nitrogen incorporation or change the nature of N-containing functional groups produced but did lead to a systematic decrease in contact angle.  相似文献   

20.
Plasma treatments in Radio Frequency Glow Discharges fed with NH3−H2 mixtures have been performed for modifying polyethylene surfaces. Treatment kinetics and the role of species present in the glow have been investigated. Actinometric Optical Emission Spectroscopy has been utilized as a plasma diagnostic technique. Electron Spectroscopy for Chemical Analysis has been utilized for studying surface composition of treated substrates, which have been examined both astreated and after derivatization of amine-functionalities with 4-trifluoromethylbenzaldehyde vapors. It has been found that experimental plasma parameters and plasma density of active species can be controlled to achieve selective grafting of-NH2 among all other nitrogen-containing groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号