首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

2.
Magnesium complexes containing ketiminate ligands were synthesized and characterized. MgBu2 reacted readily in toluene with two equiv. of [MeC(O)CHC(NHAr)Me], where Ar = 2,6-diisopropylphenyl, to generate [MeC(O)CHC(NAr)Me]2Mg (1) in 43% yield. The four-coordinate magnesium compound 1 is very moisture sensitive and acts as a Lewis acid, accepting one equiv. of Lewis base to form five-coordinate magnesium compounds. Compound [MeC(O)CHC(NAr)Me]2Mg[MeC(O)CHC(NHAr)Me] (2) was obtained in 57% yield from the reaction in toluene of MgBu2 with three equiv. of [MeC(O)CHC(NHAr)Me]. Treatment of 1 with one equiv. of free ketimine ligands [MeC(O)CHC(NHAr)Me] also led to the formation of 2. The bulky η1-ketimine of 2 can be replaced with a less bulky Lewis base such as pyridine. Treatment of 1 with excess pyridine in toluene at ambient temperature led to the formation of compound [MeC(O)CHC(NAr)Me]2Mg[NC5H5] (3) as colorless crystalline solids in 51% yield. Compounds 1, 2, and 3 were characterized by NMR and X-ray crystallography. Compounds 2 and 3 showed no activity toward the polymerization of ε-caprolactone at 25 °C after 3 h. However, when the temperature was increased to 70 °C, compounds 2 and 3 efficiently catalyzed polymerization of ε-caprolactone to generate high molecular weight poly-ε-caprolactones. The polydispersity index (PDI) of these poly-ε-caprolactones is in the range 1.57-3.18.  相似文献   

3.
2-(Azidomethyl)phenyl isocyanide, 2-(CH2N3)C6H4NC (AziNC), coordinates to some cationic Pt(II) and Pd(II) species to afford isocyanide complexes of the type trans-[MCl(AziNC)(PPh3)2][BF4] (M=Pt, l; Pd, 2). AziNC is coordinated also in some neutral Pt(II) and Pd(II) species such as [MCl2(AziNC)2] (M=Pt, 3; Pd, 4) derived from the reactions of 2 equiv. of AziNC with [PtCl2(COD)] and [PdCl2(MeCN)2], respectively. Complexes 1 and 2 react with 1 equiv. of PPh3 affording the heterocyclic carbene complexes trans-[MCl{(H)}(PPh3)2][BF4] (M=Pt, 5; Pd, 6). Complexes 3 and 4 react with 1 equiv. of PPh3 displacing the isocyanide with the formation of the complexes cis-[MCl2(AziNC)(PPh3)] (M=Pt, 7; Pd, 8). These latter ones react with 2 equiv. of PPh3 affording as the final products the cationic carbene species trans-[MCl{(H)}(PPh3)2][Cl] (M=Pt, 9; Pd, 10). Complex 5 was also characterized by single crystal X-ray diffraction. The carbene complex is square-planar and the angle formed between the platinum square plane and the heterocyclic carbene ligand is 87.9(2)°. The C(1)-N(1) and C(1)-N(2) bond distances in the latter of 1.32(2) and 1.30(2) Å, respectively, are short for a single bond and indicate extensive π-bonding between the nitrogen atoms and the carbene carbon.  相似文献   

4.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

5.
2-(4-Chloro-5H-1,2,3-dithiazolylideneamino)benzonitrile 1a reacts with triphenylphosphine (4 equiv) in the presence of water (2 equiv) to afford anthranilonitrile 2a, 3-aminoindole-2-carbonitrile 3a and (2-cyanoindol-3-yl)iminotriphenylphosphorane 4a, together with triphenylphosphine sulfide and oxide. The use of polymer bound triphenylphosphine provides cleaner reaction mixtures. 2-(4-Chloro-5H-1,2,3-dithiazolylideneamino)-4,5-dimethoxybenzonitrile 1h does not give the corresponding indole on treatment with triphenylphosphine but gives 6,7-dimethoxyquinazoline-2-carbonitrile 5 (15%) and 2-cyano-4,5-dimethoxy cyanothioformanilide 6 (36%). A total of seven new 3-aminoindole-2-carbonitriles 3a-g are prepared and fully characterised.  相似文献   

6.
The syntheses and reactivities of yttrium alkyl and hydride complexes containing a sterically demanding, bis(heptamethylindenyl) ligand set are reported. The chloride complex Ind*2YCl(THF) (2, Ind* = heptamethylindenyl) was prepared by the reaction of Ind*Na (1, 2 equiv) with YCl3 in THF. Compound 2 was structurally characterized. Complex reaction mixtures were obtained when compound 2 was treated with KSi(SiMe3)3 or (THF)3LiSi(SiMe3)3, although 2 reacted readily with MeLi to yield the methyl complex Ind*2YMe(THF) (3). Treatment of 3 with H2 or PhSiH3 gave the base-stabilized hydride complex Ind*2YH(THF) (4). The base-free chloride complex Ind*2YCl (5) was synthesized by the reaction of 1 (2 equiv) with YCl3 in toluene. Treatment of 2 with LiCH(SiMe3)2 yielded the base-free alkyl complex Ind*2YCH(SiMe3)2 (6). No reaction was observed between 6 and CH4, and complex reaction mixtures were obtained when 6 was treated with H2 or PhSiH3. However, when 6 was treated with H2 in the presence of THF, the transient hydride Ind*2YH was trapped as complex 4. The increased steric bulk of 6 leads to a slower reaction with PhSiH3 as compared to Cp*2YCH(SiMe3)2 (7).  相似文献   

7.
Reaction of (C5Me5)2Lu(Me)(μ-Me)Li(THF)3 (2) with excess 12-crown-4 affords the new separated ion pair complex, [Li(12-crown-4)2][(C5Me5)2LuMe2] (3), in excellent yield. This complex reacts with 2,6-diisopropylaniline and phenylacetylene to give the methyl amide complex [Li(12-crown-4)2][(C5Me5)2Lu(Me)(NH-2,6-iPr2C6H3)] (4) and the bis(acetylide) complex [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5), respectively. Attempts to promote methane loss from complexes 3 and 4 to generate a lutetium methylidene or imido complex, respectively, were unsuccessful. The ability of the bis(acetylide) complex 5 to act as a π-tweezer complex was also explored. Reaction between [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5) and CuSPh gave only intractable lutetium products and the copper(I) species [Li(12-crown-4)2][Cu(C≡C-Ph)2] (8). The new lutetium complexes have been characterized by elemental analysis and NMR spectroscopy. Finally, the X-ray crystal structures of (C5Me5)2Lu(Me)(μ-Me)Li(THF)3 (2), [Li(12-crown-4)2][(C5Me5)2LuMe2] (3), [Li(12-crown-4)2][(C5Me5)2Lu(Me)(NH-2,6-iPr2C6H3)] (4), [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5), and [Li(12-crown-4)2][Cu(C≡C-Ph)2] (8) are also reported.  相似文献   

8.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

9.
The synthesis and characterization of complexes containing a Cp∗Sc(R2bpy) (Cp∗ = pentamethylcyclopentadienyl, bpy = 4,4′-R,R-2,2′-bipyridine, R = H, Me) motif are described. Cp∗ScI2 (1) was prepared from Cp∗Sc(acac)2 (acac = acetylacetonate) and AlI3 (2 equiv) in pentane. Compound 1 reacted with bipyridine and 4,4′-dimethyl-2,2′-bipyridine (dmb) in benzene to yield Cp∗ScI2(bpy) (3) and Cp∗ScI2(dmb) (4), respectively. Compound 3 was reduced by alkali metal reductants such as Na/Hg, NaK2, and K in aromatic solvents to yield [Cp∗ScI(bpy)]2 (5). The chloride analog of 5, [Cp∗ScCl(bpy)]2 (7), was prepared from Cp∗ScCl2 by salt metathesis with Li2(dme)2bpy (6) (dme = dimethoxyethane) in toluene. Compounds 1, 5, and 7 have been structurally characterized. Analysis of the bond distances of the bipyridine ligands in 5 and 7, together with infrared and UV/vis spectroscopic data, suggest that the bipyridine ligands in these molecules exist as radical anions. The bipyridine ligands in 5 and 7 are arranged co-facially and are in close proximity (?3.30 Å), suggesting the presence of a π-π interaction.  相似文献   

10.
Reaction of N-tert-butyloxycarbonylasparagine (Boc-Asn) with 2 equiv of benzyl bromide in presence of cesium carbonate led to N-benzyl-3-Boc-amino-pyrrolidin-2,5-dione 1a (N-benzyl-3-Boc-aminosuccinimide). Borane dimethylsulfide reduced 3-Boc-aminopyrrolidine-2,5-dione 1a into 3-Boc-aminopyrrolidin-2-one 2a. The same procedure could also be used to prepare derivatives 1 and 2 substituted on the aromatic ring.  相似文献   

11.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

12.
Syntheses of rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{Me3SiN(CH2)3NSiMe3} (rac-3/meso-3) and rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{PhN(CH2)3NPh} (rac-4/meso-4) were achieved by metallation of K2[PhP(3-t-Bu-C5H3)2] · 1.3 THF (2) with Zr{RN(CH2)3NR}Cl2(THF)2 (where R = SiMe3 or Ph, respectively) using ethereal solvent. These isomeric pairs were characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy; rac-3 and rac-4 were also examined via single crystal X-ray crystallography. The structures of rac-3 and rac-4 are notable in the tendency of the cyclopentadienyl rings towards η3 coordination. While isolated samples of rac-3/meso-3 and rac-4/meso-4 slowly isomerize in tetrahydrofuran-d8 to equilibrium ratios, the isomerization rate for 3 is more than 15-fold greater than that for 4. In addition, equilibrium ratios are rapidly reached when isolated samples of rac-3/meso-3 and rac-4/meso-4 are exposed to tetrabutylammonium chloride in tetrahydrofuran-d8 solvent. We propose that a nucleophile (either chloride or the phosphine interannular linker) brings about dissociation of one cyclopentadienyl ring, thus promoting the rac/meso isomerization mechanism.  相似文献   

13.
A Mo(0) complex containing a new tetraphosphine ligand [Mo(P4)(dppe)] (1; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2, dppe = Ph2PCH2CH2PPh2) reacted with CO2 (1 atm) at 60 °C in benzene to give a Mo(0) carbonyl complex fac-[Mo(CO)(η3-P4O)(dppe)] (2), where the O abstraction from CO2 by one terminal P atom in P4 takes place to give the dangling P(O)Ph2 moiety together with the coordinated CO. On the other hand, reaction of 1 with TolNCS (Tol = m-MeC6H4) in benzene at 60 °C resulted in the incorporation of three TolNCS molecules to the Mo center, forming a Mo(0) isocyanide-isothiocyanate complex trans,mer-[Mo(TolNC)22-TolNCS)(η3-P4S)] (4), where the S abstraction occurs from two TolNCS molecules by P4 and dppe to give the η3-P4S ligand and free dppeS, respectively, together with two coordinated TolNC molecules. The remaining site of the Mo center is occupied by the third TolNCS ligating at the CS bond in an η2-manner. The X-ray analysis has been undertaken to determine the detailed structures for 2 and 4.  相似文献   

14.
Yanlong Kang 《Tetrahedron》2004,60(49):11219-11225
The use of simple calix[4]arenes 1a,b for NO2/N2O4 sensing and conversion is demonstrated, both in solution and in the solid state. Upon reacting with these gases, compounds 1a,b encapsulate reactive NO+ cations within their cavities with the formation of deeply colored (λmax∼570 nm) charge-transfer complexes 2a,b. Further functionalization of the calix[4]arene platform is reported for attachment to solid supports. Polymer-supported calixarene material 3 was prepared, which reversibly traps NO2/N2O4 with the formation of nitrosonium storing polymer 4. Material 4 was effectively used for nitrosation of amides.  相似文献   

15.
Two equivalents of the thermally stable silylene Si[(NCH2But)2C6H4-1,2] (1) react with pyridine to yield the 1-aza-2,3-disilacyclobutane derivative (2), which is labile and slowly rearranges via a 1,3-H shift to the 2-pyridyldisilane (3). A similar reaction of 1 with quinoline gives 1-aza-2,3-disilacyclobutane derivative (4), which is stable. The X-ray structures of 2 and 3 are discussed.  相似文献   

16.
1-Ethynyl-2-phenyltetramethyldisilanes HCCSiMe2SiMe2C6H4X [X = NMe2 (1), H (2), CH3 (3), Br (4), CF3 (5)] are accessible from ClSiMe2SiMe2Cl, BrMgC6H4X and HCCMgBr in a two step Grignard reaction. The crystal structure of 1 as determined by single crystal X-ray crystallography exhibits a nearly planar PhNMe2 moiety and an unusual gauche array of the phenyl and the acetylene group with respect to rotation around the Si-Si bond. Full geometry optimization (B3LYP/6-31+G∗∗) of the gas phase structures of 1-5 affords minima for the gauche and the anti rotational isomers, both being very close in energy with a rotational barrier of only 3-5 kJ/mol. Experimental and calculated (time-dependent DFT B3LYP/TZVP) UV absorption data of 1-5 show pronounced electronic interactions of the HCC- and the C6H4X π-systems with the central Si-Si bond.  相似文献   

17.
Reactions of [Ti(OPri)4] with various oximes, in anhydrous refluxing benzene yielded complexes of the type [Ti{OPri}4−n{L}n], where, n = 1-4 and LH = (CH3)2CNOH (1-4), C9H16CNOH (5-8) and C9H18CNOH (9-12). The compounds were characterized by elemental analyses, molecular weight measurements, FAB-mass, FT-IR and NMR (1H, 13C{1H}) spectral studies. The FAB-mass spectra of mono- (1), and di- (2), (6), (10) substituted products indicate their dimeric nature and that of tri- (3) and tetra- (4), (8) substituted derivatives suggest their monomeric nature. Crystal and molecular structure of [Ti{ONC10H16}4·2CH2Cl2] (8A) suggests that the oximato ligands bind the metal in a dihapto η2-(N, O) manner, leading to the formation of an eight coordinated species. Thermogravimetric curves of (3), (6) and (10) exhibit multi-step decomposition with the formation of TiO2 as the final product in each case, at 900 °C. Low temperature (∼600 °C) sol-gel transformations of (2), (3), (4), (6), (7) and (8) yielded nano-sized titania (a), (b), (c), (d), (e) and (f), respectively. Formation of anatase phase in all the titania samples was confirmed by powder XRD patterns, FT-IR and Raman spectroscopy. SEM images of (a), (b), (c), (d), (e) and (f) exhibit formation of nano-grains with agglomer like surface morphologies. Compositions of all the titania samples were investigated by EDX analyses. The absorption spectra of the two representative samples, (a) and (f) indicate an energy band gap of 3.17 eV and 3.75 eV, respectively.  相似文献   

18.
A new series of neutral organometallic building blocks based on piano-stool ruthenium(II) complexes, RuCl2(p-cymene)Ph2PCH2Y [Y = -NHC6H4(2-CO2H) (2a), -NHC6H4(3-CO2H) (2b), -NHC6H3(3-CO2H)(6-OCH3) (2c), -NHC6H4(4-CO2H) (2d), -NHC6H3(2-CO2H)(4-OH) (2e), -NHC6H3(3-OH)(4-CO2H) (2f), -NHC6H3(2-CO2H)(5-CO2H) (2g) and -OH (2h)], were synthesised in high yields (>88%) from {RuCl2(p-cymene)}2 and the appropriate phosphines 1a-1h. The new tertiary phosphine 1b was prepared by Mannich condensation of NH2C6H4(3-CO2H) with Ph2PCH2OH in MeOH. Solution NMR (31P{1H}, 1H), FT-IR and microanalytical data are in full agreement with the proposed structures. Single crystal X-ray studies confirm that, in each case, compounds 2a, 2b and 2d-2h have piano-stool arrangements with typical Ru-P, Ru-Cl and Ru-Ccentroid bond lengths. From our crystallographic studies, factors that influence the supramolecular assemblies of these ruthenium(II) complexes include: (i) the type of functional group present, (ii) the geometric disposition of the -N(H)CH2PPh2, -CO2H and -OH groups around the central benzene scaffold, and (iii) the solvents used in the recrystallisations. Hence in isomers 2a and 2b, molecules are associated into head-to-tail dimer pairs through classical intermolecular O-H?O hydrogen bonding. This feature is also observed in isomer 2d but dimer pairs are further associated to give a 1-D chain through assisted intermolecular N-H?Cl hydrogen bonding. The additional 4-hydroxo group in 2e promotes a ladder arrangement via intermolecular O-H?O and O-H?Cl hydrogen bonding. In contrast the isomeric compound 2f does not show head-to-tail O-H?O hydrogen bonding but instead O-H?Cl and N-H?O intermolecular hydrogen bonding is observed. Depending on the choice of solvent (MeOH or DMSO), 2g forms extended networks based on chains (2g · DMSO · 1.5MeOH) or tapes (2g · 3MeOH). In 2h, a single intramolecular O-H?Cl hydrogen bond is observed for each independent molecule. The X-ray structure of one representative tertiary phosphine, 1f, has also been determined.  相似文献   

19.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

20.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号