首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first quantitative assessment of the maximum amount of nanotubes that can exist in the isotropic phase () of single-walled carbon nanotubes (SWNTs) in Br?nsted-Lowry acids. We employ a centrifugation technique in conjunction with UV-vis-nIR spectroscopy to quantify , which is also the critical concentration of the isotropic-nematic transition of SWNTs in strong acids. Centrifugation of biphasic dispersions of SWNTs, that is, acid dispersions consisting of an isotropic phase in equilibrium with an ordered nematic liquid crystalline phase, results in a clear phase separation, where the isotropic phase is supernatant. Dilution of the isotropic phase with a known amount of acid followed by UV-vis-nIR absorbance measurements yields , that is, the maximum concentration of SWNTs that can exist in the isotropic phase in a given acid for a given SWNTs' length distribution. At low SWNT concentration (below 200 ppm) in superacids, light absorbance in the range from 400 to 1400 nm scales linearly with concentration. This Beer's law behavior yields calibration curves for measuring SWNTs' concentration in acids. We find that the critical concentration of the isotropic-nematic transition increases with acid strength in accordance with the previously proposed sidewall protonation mechanism for dispersing SWNTs in acids.  相似文献   

2.
Substantial separation of single-wall carbon nanotubes (SWNTs) according to type (metallic versus semiconducting) has been achieved for HiPco and laser-ablated SWNTs. We presently argue that stable dispersions of SWNTs with octadecylamine (ODA) in tetrahydrofuran (THF) originate from the physisorption and organization of ODA along the SWNT sidewalls in addition to the originally proposed zwitterion model. Furthermore, the reported affinity of amine groups for semiconducting SWNTs, as opposed to their metallic counterparts, contributes additional stability to the physisorbed ODA. This provides a venue for the selective precipitation of metallic SWNTs upon increasing dispersion concentration, as indicated by Raman investigations.  相似文献   

3.
We examine the Breit-Wigner-Fano (BWF) line shape in the Raman spectra of carbon single-wall nanotubes (SWNTs) dispersed in aqueous suspensions. Bundling and electronic effects are studied by comparing undoped SWNTs (C-SWNTs) to boron-doped nanotubes (B-SWNTs) in a variety of different surfactant solutions. For SWNTs dispersed with nonionic surfactants that are less effective in debundling than ionic surfactants, the Raman spectra retain a large BWF feature. However, we demonstrate that even for SWNTs dispersed as isolated nanotubes by ionic surfactants the BWF feature may be present and that the intensity of the BWF is highly sensitive to the specific surfactant. In particular, surfactants with electron-donating groups tend to enhance the BWF feature. Also, modification of the SWNT electronic properties by boron doping leads to enhanced surfactant dispersion relative to undoped C-SWNTs and also to modification of the BWF feature. These observations are in agreement with reports demonstrating an enhancement of the BWF by bundling but also agree with reports that suggest electron donation can enhance the BWF feature even for isolated SWNTs. Importantly, these results serve to caution against using the lack or presence of a BWF feature as an independent measure of SWNT aggregation in surfactant dispersions.  相似文献   

4.
As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.  相似文献   

5.
There is great interest in using single-walled carbon nanotubes (SWNTs) as nanoscale probes and sensors in biological electronics and optical devices because the electronic and optical properties of SWNTs are extremely sensitive to the surrounding environments. A well-controlled modification of SWNT surfaces may provide unique interfaces that are sensitive to the biological variables such as pH, glucose, various ions and proteins. In this paper, we report a facile chemical routine to prepare water-soluble SWNTs that still retain their van Hove singularities after acid oxidative treatment. The aqueous solutions (0.03-0.15 mg/mL) are stable for more than a month. The solubility in water for as-treated SWNTs with surfaces modified by carboxylate groups provides us with a unique opportunity to reveal the relationship of the SWNT electronic and optical properties with pH. Here we present the first observation that after surface modification with carboxylate groups, the optical absorption of the first interband transition of as-treated water-soluble semiconducting SWNTs reversibly responds to the pH change in aqueous solutions. Our results indicate that surface modification of SWNTs is a promising way for preparing chemically selective SWNT interfaces, which may open new exciting opportunities for various applications.  相似文献   

6.
We have succeeded in dispersing single-walled carbon nanotubes (SWNTs) into an aqueous solution of poly(ethylene glycol)-terminated malachite green derivative (PEG-MG) through simple sonication. It was found that UV exposure caused reaggregation of these predispersed SWNTs in the same aqueous medium, as adsorbed PEG-MG photochromic chains could be effectively photocleavaged from the nanotube surface. The observed light-controlled dispersion and reaggragation of SWNTs in the aqueous solution should facilitate the development of SWNT dispersions with a controllable dispersity for potential applications.  相似文献   

7.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

8.
The self-assembly of Pluronic block copolymers in dispersions of single-wall carbon nanotubes (SWNT) was investigated by spin probe electron paramagnetic resonance (EPR) spectroscopy. Nitroxide spin labeled block copolymers derived from Pluronic L62 and P123 were introduced in minute amounts into the dispersions. X-band EPR spectra of the SWNT dispersions and of native polymer solutions were measured as a function of temperature. All spectra, below and above the critical micelle temperature (CMT), were characteristic of the fast limit motional regime. The temperature dependence of the 14N isotropic hyperfine coupling, aiso, and the rotational correlation time, tauc, were determined. It was observed that, below the CMT, EPR does not distinguish between chains adsorbed on SWNT and free chains. Above CMT, substantial differences were observed: in the native solution, the Pluronics spin labels experience only one environment, Sm, assigned to spin labels in the corona of the Pluronic micelle, whereas in the SWNT dispersions, in addition to Sm, a second population of nonaggregated, individual chains, Si, is observed. The relative amounts of Sm and Si were found to depend on the relative concentrations of the Pluronic and SWNT. Furthermore, the aggregates formed in the SWNT dispersions do not show the typical increase in chain-end mobility as a function of temperature, observed in the post-CMT regime of the native Pluronic solutions. This suggests a larger dynamical coupling among aggregated chains in the presence of the SWNT as compared to the native micelles. The overall findings are consistent with the formation of a new type of aggregates, composed of a SWNT-polymer hybrid.  相似文献   

9.
We theoretically investigate the separation of individualized metallic and semiconducting single-wall carbon nanotubes (SWNTs) in a dielectrophoretic (DEP) flow device. The SWNT motion is simulated by a Brownian dynamics (BD) algorithm, which includes the translational and rotational effects of hydrodynamic, Brownian, dielectrophoretic, and electrophoretic forces. The device geometry is chosen to be a coaxial cylinder because it yields effective flow throughput, the DEP and flow fields are orthogonal to each other, and all the fields can be described analytically everywhere. We construct a flow-DEP phase map showing different regimes, depending on the relative magnitudes of the forces in play. The BD code is combined with an optimization algorithm that searches for the conditions that maximize the separation performance. The optimization results show that a 99% sorting performance can be achieved with typical SWNT parameters by operating in a region of the phase map where the metallic SWNTs completely orient with the field, whereas the semiconducting SWNTs partially flow-align.  相似文献   

10.
Highly stable single-walled carbon nanotube (SWNT) dispersions are obtained after ultrasonication in cellulose nanocrystal (CN) aqueous colloidal suspensions. Mild dispersion conditions were applied to preserve the SWNT length in order to facilitate the identification of hybrid objects. This led to a moderate dispersion of 24% of the SWNTs. Under these conditions, atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments succeeded in demonstrating the formation of hybrid particles in which CNs are aligned along the nanotube axis by a self-assembly process. These SWNT/CN dispersions are used to create multilayered thin films with the layer-by-layer method using polyallylamine hydrochloride as a polyelectrolyte. Homogeneous films from one to eight bilayers are obtained with an average bilayer thickness of 17 nm. The presence of SWNTs in each bilayer is attested to by characteristic Raman signals. It should be noted that these films exhibit a near-infrared luminescence signal due to isolated and well-separated nanotubes. Furthermore, scanning electron microscopy (SEM) suggests that the SWNT network is percolating through the film.  相似文献   

11.
Single-walled carbon nanotube (SWNT) bundles are selectively removed from an aqueous dispersion containing individually suspended carbon nanotubes coated with gum Arabic via interfacial trapping. The suspensions are characterized with absorbance, fluorescence, and Raman spectroscopy as well as atomic force microscopy (AFM) and rheology. The resulting aqueous suspensions have better dispersion quality after interfacial trapping and can be further improved by altering the processing conditions. A two-step extraction process offers a simple and fast approach to preparing high-quality dispersions of individual SWNTs comparable to ultracentrifugation. Partitioning of SWNTs to the liquid-liquid interface is described by free energy changes. SWNT bundles prefer to reside at the interface over individually suspended SWNTs because of greater free energy changes.  相似文献   

12.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

13.
Single-walled carbon nanotubes (SWNTs) are typically long (greater than or approximately equal 100 nm) and have been well established as novel quasi one-dimensional systems with interesting electrical, mechanical, and optical properties. Here, quasi zero-dimensional SWNTs with finite lengths down to the molecular scale (7.5 nm in average) were obtained by length separation using a density gradient ultracentrifugation method. Different sedimentation rates of nanotubes with different lengths in a density gradient were taken advantage of to sort SWNTs according to length. Optical experiments on the SWNT fractions revealed that the UV-vis-NIR absorption and photoluminescence peaks of the ultrashort SWNTs blue-shift up to approximately 30 meV compared to long nanotubes, owing to quantum confinement effects along the length of ultrashort SWNTs. These nanotube capsules essentially correspond to SWNT quantum dots.  相似文献   

14.
Single-walled carbon nanotubes (SWNTs) are promising materials for in vitro and in vivo biological applications due to their high surface area and inherent near infrared photoluminescence and Raman scattering properties. Here, we use density gradient centrifugation to separate SWNTs by length and degree of bundling. Following separation, we observe a peak in photoluminescence quantum yield (PL QY) and Raman scattering intensity where SWNT length is maximized and bundling is minimized. Individualized SWNTs are found to exhibit high PL QY and high resonance-enhanced Raman scattering intensity. Fractions containing long, individual SWNTs exhibit the highest PL QY and Raman scattering intensities, compared to fractions containing single, short SWNTs or SWNT bundles. Intensity gains of approximately ~1.7 and 4-fold, respectively, are obtained compared with the starting material. Spectroscopic analysis reveals that SWNT fractions at higher displacement contain increasing proportions of SWNT bundles, which causes reduced optical transition energies and broadening of absorption features in the UV-Vis-NIR spectra, and reduced PL QY and Raman scattering intensity. Finally, we adsorb small aromatic species on "bright," individualized SWNT sidewalls and compare the resulting absorption, PL and Raman scattering effects to that of SWNT bundles. We observe similar effects in both cases, suggesting aromatic stacking affects the optical properties of SWNTs in an analogous way to SWNT bundles, likely due to electronic structure perturbations, charge transfer, and dielectric screening effects, resulting in reduction of the excitonic optical transition energies and exciton lifetimes.  相似文献   

15.
Rings of single-walled carbon nanotubes (SWNTs) exist widely during water evaporation from their dispersions at low concentration on such substrates as silica wafer. We examine the phenomenon in terms of energy conservation between the increased significant curvature energy and the inherent inter-tube van der Waals (vdW) attraction potentials. And thereby, the observed multi ring structures for coarse and long SWNT bundles have also gained detailed interpretation. We conclude that carbon nanotubes (CNTs) coil into rings by their own elastic mechanism. The formed rings with different width and diameters originate from appropriate sizes of SWNTs or the bundles. Specially, the associated elasticity may have prospective potentials to reveal other fascinating self-assembling phenomenon on CNTs, for instance, the known liquid crystallinity of them. Besides, we have also analyzed the external factors to the ring formation, both statistically and dynamically.  相似文献   

16.
We show that single walled carbon nanotubes (SWNTs) with different isotope compositions exhibit distinct Raman G-band peaks and can be used for multiplexed multicolor Raman imaging of biological systems. Cancer cells with specific receptors are selectively labeled with three differently "colored" SWNTs conjugated with various targeting ligands including Herceptin (anti-Her2), Erbitux (anti-Her1), and RGD peptide, allowing for multicolor Raman imaging of cells in a multiplexed manner. SWNT Raman signals are highly robust against photobleaching, allowing long-term imaging and tracking. With narrow peak features, SWNT Raman signals are easily differentiated from the autofluorescence background. The SWNT Raman excitation and scattering photons are in the near-infrared region, which is the most transparent optical window for biological systems in vitro and in vivo. Thus, SWNTs are novel Raman tags promising for multiplexed biological detection and imaging.  相似文献   

17.
DC conductivity of conjugated polymer‐single‐walled carbon nanotube (SWNT) composite films has been measured for different SWNT concentrations. The composite was prepared by dispersing SWNTs in the poly (3‐octylthiophene), P3OT matrix already dissolved in xylene. The conductivity of the composite films showed a rapid increase as the SWNT concentration increases beyond a certain value. This behavior is explained in terms of percolating paths provided by the SWNTs in the volume of polymer matrix. To investigate the effect of length of nanotubes on the percolation conductivity, different SWNT samples were employed with similar diameter but varying tube lengths. It was found that the conductivity of the composite films is strongly dominated by the length of the nanotubes. Lower percolation limit and high conductivity value of composite films is observed for longer nanotubes. Furthermore, the conductivity is observed to be dependent on the size of the host polymer molecule also. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 89–95, 2010  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a new, bimetallic FeRu catalyst affords SWNT growth with narrow diameter and chirality distribution in methane CVD. At 600 degrees C, methane CVD on FeRu catalyst produced predominantly (6,5) SWNTs according to UV-vis-NIR absorption and photoluminescence excitation/emission (PLE) spectroscopic characterization. At 850 degrees C, the dominant semiconducting species produced are (8,4), (7,6), and (7,5) SWNTs, with much narrower distributions in diameter and chirality than materials grown by other catalysts. Further, we show that narrow diameter/chirality growth combined with chemical separation by ion exchange chromatography (IEC) greatly facilitates achieving single (m,n) SWNT samples, as demonstrated by obtaining highly enriched (8,4) SWNTs with near elimination of metallic SWNTs existing in the as-grown material.  相似文献   

19.
Zhou R  Wang P  Chang HC 《Electrophoresis》2006,27(7):1376-1385
The high polarizability and dielectrophoretic mobility of single-walled carbon nanotubes (SWNT) are utilized to capture and detect low numbers of bacteria and submicron particles in milliliter-sized samples. Concentrated SWNT solutions are mixed with the sample and a high-frequency (>100 kHz) alternating current (AC) field is applied by a microelectrode array to enhance bulk absorption of the particles (bacteria and nanoparticle substitutes) by the SWNTs via dipole-dipole interaction. The same AC field then drives the SWNT-bacteria aggregates to the microelectrode array by positive-AC dielectrophoresis (DEP), with enhanced and reversed bacteria DEP mobility due to the attached SWNTs. Since the field frequency exceeds the inverse RC time of the electrode double layer, the AC field penetrates deeply into the bulk and across the electrode gap. Consequently, the SWNTs and absorbed bacteria assemble rapidly (<5 min) into conducting linear aggregates between the electrodes. Measured AC impedance spectra by the same trapping electrodes and fields show a detection threshold of 10(4) bacteria/mL with this pathogen trapping and concentration technique.  相似文献   

20.
We demonstrated a method to pattern catalyst via inkjet printing to grow SWNTs, using metal salt solutions as the inks and an ordinary office-use printer. We printed water solutions of cobalt acetate on hydrophilic Si substrates and grew high quality SWNT films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号