首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
图G的点荫度a(G)是用来染G的顶点集合的最少颜色数使得不产生单色圈.列表点荫度al(G)是这个概念在列表染色意义下的推广.本文证明了:若G是一个直径为2的可平面图,则al(G)≤2.  相似文献   

2.
黄丹君  王阳 《数学进展》2020,(4):401-405
图G的线性点荫度vla(G)是指V(G)的最小划分数,使得每个点划分集的导出子图为线性森林.G的线性k-点荫度vlak(G)是指V(G)的最小划分数,使得每个点划分集的导出子图的每个连通分支为长度至多为k的路.1998年,吴建良证明了Halin图的线性点荫度为2.本文在此基础上,证明了对Halin图G,有vlak(G)=2,其中■  相似文献   

3.
图G的边分解是指将G分解成子图G1,G2,...,Gm,使得E(G)-E(G1)∪…∪.E(Gm),且对任意i≠j,有E(Gi)∩E(Gj)=?.若一个森林的每个连通分支都是路,则称该森林为线性森林.图G的线性荫度la(G)是指使得G可以边分解为m个线性森林的最小整数m.本文证明了Δ(G)≥15的IC-平面图G的线性荫度为[Δ(G)/2],这里Δ(G)是图G的最大度.  相似文献   

4.
荫度临界图     
周镇海 《应用数学》1996,9(1):50-52
荫度临界图周镇海(华南师大数学系广州510631)关键词:图论;无圈划分;荫度AMS(1991)主函分类:05C75本文仅考虑简单无向图.定义1设{E;,E。,…,E。}是E(G)的一种划分,如果边导出子图G〔EV1<i<n)都不含M,则称{E;,…...  相似文献   

5.
陈宏宇  谭香 《运筹学学报》2019,23(1):104-110
图G的一个边分解是指将G分解成子图G_1,G_2,…,G_m使得E(G)=E(G_1)=∪E(G_2)∪…∪E(G_m),且对于i≠j,E(G_i)∩E(G_j)=?.一个线性k-森林是指每个分支都是长度最多为k的路的图.图G的线性k-荫度la_k(G)是使得G可以边分解为m个线性k-森林的最小整数m.显然,la_1(G)是G的边色数χ'(G); la_∞(G)表示每条分支路是无限长度时的情况,即通常所说的G的线性荫度la(G).利用权转移的方法研究平面图的线性2-荫度la_2(G).设G是不含有5-圈和相邻4-圈的平面图,证明了若G连通且δ(G)≥2,则G包含一条边xy使得d(x)+d(y)≤8或包含一个2-交错圈.根据这一结果得到其线性2-荫度的上界为[△/2]+4.  相似文献   

6.
罗朝阳  孙林 《运筹学学报》2019,23(2):113-119
线性森林是指每个连通分支都是路的图.图G的线性荫度la(G)等于将其边分解为k个边不交的线性森林的最小整数k.文中利用权转移方法证明了,若G是一个最大度大于等于7且每个6-圈至多含一条弦的平面图,则la(G)=「(△(G))/2」.  相似文献   

7.
黄丹君  姜楠 《数学学报》2023,(2):339-352
图G的边分解是指将G分解成子图G1,G2,…,Gm,使得E(G)=E(G1)∪…∪E(Gm),且对任意i≠j有E(Gi)∩E(Gj)=?.若一个森林的每个连通分支都是路,则称该森林为线性森林.图G的线性荫度la(G)是指使得G可以边分解为m个线性森林的最小整数m.本文利用权转移方法证明了Δ(G)≥25的1-平面图G的线性荫度为[Δ(G)/2],这里Δ(G)是图G的最大度.  相似文献   

8.
关于图的点荫度   总被引:2,自引:0,他引:2  
本文研究了外平面图的点荫度和点荫度临界图,得到了外平面图G的点荫度a(G):a(G)={1,若G是树或林;2,若G不是树或林.  相似文献   

9.
证明了最大度$\Delta\geq 33$的1-平面图的线性荫度为$\lceil\Delta/2\rceil$  相似文献   

10.
图G的点荫度va(G)是顶点集合V(G)能划分成的这样一些子集的最少数目,其中任一子集的点导出子图都是森林.整数距离图G(D)以全体整数作为顶点集,顶点u,v相邻当且仅当|u-v|∈D,其中D是一个正整数集.对于m2k≥2,令D_(m,k,2)=[1,m]\{k,2k}.该文得出了整数距离图G(D_(m,k,2))的点荫度的几个上、下界;进而,对于m≥4,有va(G(D_(m,1,2)))=[(m+4)/5];对于m=10q+j,j=0,1,2,3,5,6,有va(G(D_(m,2,2)))=[(m+1)/5]+1.  相似文献   

11.
Let G be a planar triangle‐free graph and let C be a cycle in G of length at most 8. We characterize all situations where a 3‐coloring of C does not extend to a proper 3‐coloring of the whole graph.  相似文献   

12.
Let G be a planar graph with maximum degree Δ. It is proved that if Δ ≥ 8 and G is free of k-cycles for some k ∈ {5,6}, then the total chromatic number χ′′(G) of G is Δ + 1. This work is supported by a research grant NSFC(60673047) and SRFDP(20040422004) of China. Received: February 27, 2007. Final version received: December 12, 2007.  相似文献   

13.
Every planar graph is known to be acyclically 7‐choosable and is conjectured to be acyclically 5‐choosable (O. V. Borodin, D. G. Fon‐Der‐Flaass, A. V. Kostochka, E. Sopena, J Graph Theory 40 (2002), 83–90). This conjecture if proved would imply both Borodin's (Discrete Math 25 (1979), 211–236) acyclic 5‐color theorem and Thomassen's (J Combin Theory Ser B 62 (1994), 180–181) 5‐choosability theorem. However, as yet it has been verified only for several restricted classes of graphs. Some sufficient conditions are also obtained for a planar graph to be acyclically 4‐ and 3‐choosable. In particular, the acyclic 4‐choosability was proved for the following planar graphs: without 3‐, 4‐, and 5‐cycles (M. Montassier, P. Ochem, and A. Raspaud, J Graph Theory 51 (2006), 281–300), without 4‐, 5‐, and 6‐cycles, or without 4‐, 5‐, and 7‐cycles, or without 4‐, 5‐, and intersecting 3‐cycles (M. Montassier, A. Raspaud, W. Wang, Topics Discrete Math (2006), 473–491), and neither 4‐ and 5‐cycles nor 8‐cycles having a triangular chord (M. Chen and A. Raspaud, Discrete Math. 310(15–16) (2010), 2113–2118). The purpose of this paper is to strengthen these results by proving that each planar graph without 4‐ and 5‐cycles is acyclically 4‐choosable.  相似文献   

14.
图的正常k-全染色是用k种颜色给图的顶点和边同时进行染色,使得相邻或者相关联的元素(顶点或边)染不同的染色.使得图G存在正常k-全染色的最小正整数k,称为图G的全色数,用χ″(G)表示.证明了若图G是最大度△≥6且不含5-圈和相邻6-圈的平面图,则χ″(G)=△+1.  相似文献   

15.
设Fk*是满足以下条件的3-正则2-连通平面图G所组成的图类,在G中存在这样的圈C,使得G-E(C)产生k个不相交的树T1,…,Tk(|E(Ti)|≥3,i=1,…,k),且这些树是按C的指定方向C*依次粘在圈C上的.本文主要证明了如下结果:Fk*中的图都是Hamilton的.  相似文献   

16.
Recently, Borodin, Kostochka, and Yancey (Discrete Math 313(22) (2013), 2638–2649) showed that the vertices of each planar graph of girth at least 7 can be 2‐colored so that each color class induces a subgraph of a matching. We prove that any planar graph of girth at least 6 admits a vertex coloring in colors such that each monochromatic component is a path of length at most 14. Moreover, we show a list version of this result. On the other hand, for each positive integer , we construct a planar graph of girth 4 such that in any coloring of vertices in colors there is a monochromatic path of length at least t. It remains open whether each planar graph of girth 5 admits a 2‐coloring with no long monochromatic paths.  相似文献   

17.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ’ a(G).In this paper we prove that χ ’ a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.  相似文献   

18.
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamik (Math. Slovaca 28 (1978), 139–145) and later Alon et al. (J Graph Theory 37 (2001), 157–167) conjectured that for any simple graph G with maximum degree Δ. In this article, we confirm this conjecture for planar graphs of girth at least 4.  相似文献   

19.
Let G =(V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function(SCDF) of G if ∑_(e∈E(C))f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ'_(sc)(G) = min{∑_(e∈E)f(e)| f is an SCDF of G}. This paper will characterize all maximal planar graphs G with order n ≥ 6 and γ'_(sc)(G) = n.  相似文献   

20.
A graph is hypohamiltonian if it is not Hamiltonian, but the deletion of any single vertex gives a Hamiltonian graph. Until now, the smallest known planar hypohamiltonian graph had 42 vertices, a result due to Araya and Wiener. That result is here improved upon by 25 planar hypohamiltonian graphs of order 40, which are found through computer‐aided generation of certain families of planar graphs with girth 4 and a fixed number of 4‐faces. It is further shown that planar hypohamiltonian graphs exist for all orders greater than or equal to 42. If Hamiltonian cycles are replaced by Hamiltonian paths throughout the definition of hypohamiltonian graphs, we get the definition of hypotraceable graphs. It is shown that there is a planar hypotraceable graph of order 154 and of all orders greater than or equal to 156. We also show that the smallest planar hypohamiltonian graph of girth 5 has 45 vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号