首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
李志坚  程璐  温姣进 《中国物理 B》2010,19(1):10305-010305
We consider a two-qubit system described by the Heisenberg XY model with Dzyaloshinski--Moriya (DM) anisotropic interaction in a perpendicular magnetic field to investigate the relation between entanglement, geometric phase and quantum phase transition (QPT). It is shown that the DM interaction has an effect on the critical boundary. The combination of entanglement and geometric phase may characterize QPT completely. Their jumps mean that the occurrence of QPT and inversely the QPT at the critical point at least corresponds to a jump of one of them.  相似文献   

2.
We investigate nonlinear Dicke quantum phase transition(QPT) induced by inter-atomic nonlinear interaction and its quantum witness in a cavity-Bose–Einstein-condensate(BEC) system. It is shown that inter-atomic nonlinear interaction in a cavity BEC system can induce first-order Dicke QPT. It is found that this nonlinear Dicke QPT can happen in an arbitrary coupling regime of the cavity and atoms. It is demonstrated that the quantum speed limit time can witness the Dicke QPT through its sudden change at the critical point of the QPT.  相似文献   

3.
In this paper we theoretically report an unconventional quantum phase transition of a simple Lipkin- Meshkow-Glick model: an interacting collective spin system without external magnetic field. It is shown that this model with integer-spin can exhibit a flrst-order quantum phase transition between different disordered phases, and more intriguingly, possesses a hidden supersymmetry at the critical point. However, for half-integer spin we predict another flrst-order quantum phase transition between two different long-range-ordered phases with a vanishing energy gap, which is induced by the destructive topological quantum interference between the intanton and anti-instanton tunneling paths and accompanies spontaneously breaking of supersymmetry at the same critical point. We also show that, when the total spin-value varies from half-integer to integer this model can exhibit an abrupt variation of Berry phase from π to zero.  相似文献   

4.
We investigate the anisotropic magnetic transports in topological semimetal TaSb2. The compound shows the large magnetoresistance(MR) without saturation and the metal-insulator-like transition no matter whether the magnetic field is parallel to c-axis or a-axis, except that the MR for B‖c is almost twice as large as that of B‖a at low temperatures. The adopted Kohler's rule can be obeyed by the MR at distinct temperatures for B‖c,but it is slightly violated as B‖a. The angle-dependent MR measurements exhibit the two-fold rotational symmetry below70 K,consistent with the monoclinic crystal structure of TaSb2. The dumbbell-like picture of angle-dependent MR in TaSb2 suggests a strongly anisotropic Fermi surface at low temperatures. However, it finally loses the two-fold symmetry over 70 K, implying a possible topological phase transition at around the temperature where Tm is related to a metal-insulator-like transition under magnetic fields.  相似文献   

5.
In the light of φ-mapping method and topological current theory, the effect of disclination lines on the free energy density of nematic liquid crystals is studied. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclination lines. The other is the saddle-splay energy density, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kπ /2 when the Jacobian determinant of the director field does not vanish at the singularities of the director field. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e., the disclination strengthes. When the Jacobian determinant vanishes, the generation, annihilation, intersection, splitting and merging processes of the saddle-splay energy density are detailed in the neighborhoods of the limit points and bifurcation points, respectively. It is shown that the disclination line with high topological quantum number is unstable and will evolve to the low topological quantum number states through the splitting process.  相似文献   

6.
The branch process of the skyrmions in the fractional quantum Hall effect is studied from the Ф-mapping topological current. It is shown that there exists a field ζ whose Hopf indices and Brouwer degrees characterize the topological structure of the skyrmions. Based on the bifurcation theory of the Ф-mapping theory, it is found that the skyrmions can be generated or annihilated at the limit points and they encounter, split or merge at thebifurcation points of the new field ζ.  相似文献   

7.
In the light of φ-mapping method-and topological current theory, the effect of disclination lines on the free energy density of nematic liquid crystals is studied. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclination lines. The other is the saddle-splay energy density, which is shown to be centralized at the disclination lines and to he topologically quantized in the unit of kπ/2 when the Jacobian determinant of the director field does not vanish at the singularities of the director field. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e., the disclination strengthes. When the Jacobian determinant vanishes, the generation, annihilation, intersection, splitting and merging processes of the saddle-splay energy density are detailed in the neighborhoods of the limit points and bifurcation points, respectively. It is shown that the disclination line with high topological quantum number is unstable and will evolve to the low topological quantum number states through the splitting process.  相似文献   

8.
It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe_3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe_3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe_(3-x)Se_x single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ_0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ_0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe_(3-x)Se_x,which indicates conventional superconductivity despite of the existence of a CDW QCP.  相似文献   

9.
张刚台  白婷婷  张美光 《中国物理 B》2012,21(5):54214-054214
We theoretically investigate high-order harmonic generation(HHG) from a helium ion model in a two-color laser field,which is synthesized by a fundamental pulse and its second harmonic pulse.It is shown that a supercontinuum spectrum can be generated in the two-color field.However,the spectral intensity is very low,limiting the application of the generated attosecond(as) pulse.By adding a static electric field to the synthesized two-color field,not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased,but also the quantum paths of the HHG can be significantly modulated.As a result,the extension and enhancement of the supercontinuum spectrum are achieved,producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV.In particular,we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation.  相似文献   

10.
In this study, we investigate pairwise non-classical correlations measured using a one-way quantum deficit as well as quantum coherence in the XY spin-1/2 chain in a transverse magnetic field for both zero and finite temperatures. The analytical and numerical results of our investigations are presented. In the case when the temperature is zero, it is shown that the one-way quantum deficit can characterize quantum phase transitions as well as quantum coherence. We find that these measures have a clear critical point at λ = 1. When λ 1, the one-way quantum deficit has an analytical expression that coincides with the relative entropy of coherence. We also study an XX model and an Ising chain at the finite temperatures.  相似文献   

11.
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is determined to be a Si_(170) cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300 meV, which is a result of the large capacitance of a small silicon quantum dot(~1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10 meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.  相似文献   

12.
We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e~2/h at temperature T=1.6 K and magnetic field μ_0H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.  相似文献   

13.
In this paper we study a negatively charged exciton (NCE), which is trapped by a two-dimensional (2D) parabolic potential. By using matrix diagonalization techniques, the correlation energies of the low-lying states with L=0, 1, and 2 are calculated as a function of confinement strength. We find that the size effects of different states are different. This phenomenon can be explained as a hidden symmetry, which is originated purely from symmetry. Based on symmetry, the features of the low-lying states are discussed in the influence of the 2D parabolic potential well. It is found that the confinement may cause accidental degeneracies between levels with different low-excited states. It is shown that the effect of quantum confinement on the binding energy of the heavy hole is stronger than that of a light hole.  相似文献   

14.
The ground-state properties and quantum phase transitions (QPTs) of the one-dimensional bond-alternative XXZ model are investigated by the infinite time-evolving block decimation (iTEBD) method.The bond-alternative effects on its ground-state phase diagram are discussed in detail.Once the bond alternation is taken into account,the antiferromagnetic phase (Δ 1) will be destroyed at a given critical point and change into a disordered phase without nonlocal string order.The QPT is shown to be second-order,and the whole phase diagram is provided.For the ferromagnetic phase region (Δ-1),the critical point r c always equals 1 (independent of Δ),and the QPT for this case is shown to be first-order.The dimerized Heisenberg model is also discussed,and two disordered phases can be distinguished by with or without nonlocal string orders.Both the bipartite entanglement and the fidelity per site,as two kinds of model-independent measures,are capable of describing all the QPTs in such a quantum model.  相似文献   

15.
By using the concept of concurrence, we numerically investigate the thermal entanglement between any two nearest-neighbour spins in uniform and periodic anisotropic XY chains in a transverse field at finite temperature T. It is found that the entanglement has more than one critical temperatures on some parameter regions for uniform and periodic chains. We also discuss the behaviour of the thermal entanglement at the vicinity of quantum phase transition of periodic anisotropic XY chains and find that a11 the derivatives aλC have similar behaviour as that of the uniform chain.  相似文献   

16.
汪萨克  汪军  刘军丰 《中国物理 B》2016,25(7):77305-077305
We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.  相似文献   

17.
The ground-state phase transition and the phonon dispersion relation of the quantum double-well model are studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty relation, we obtain an effective classical Hamiltonian for the system and equations of motion for the particle's expectation values. It is shown that the effective substrate potential transits from a symmetric double-well potential to a symmetric single-well potential, and the ground state exhibits a transition from a broken symmetry phase to a restored symmetry phase as increasing the strength of quantum fluctuations. We also obtain the phonon dispersion relations and the phonon gaps at the two phases.  相似文献   

18.
We report measurements on ultrathin,doubly connected superconducting cylinders of Al that exhibit a destructive regime,which refers to the loss of superconductivity in a doubly connected superconductor near applied half flux quanta due to the sample topology and the small size of the sample.A depairing quantum phase transition(QPT)between a superconducting and metallic state tuned by the magnetic flux enclosed in the quasi one-dimensional(1D)cylinder was found at the onset of the destructive regime.Results on magnetic flux and temperature dependent sample resistance as well as current-voltage characteristics revealed the presence of both thermally activated and quantum phase slips near the depairing QPT.On the superconducting side of the QPT,thermally activated phase slips as described by the Langer-Ambegaokar and McCumber-Halperin(LAMH)theory were found to describe the sample resistance as the system was pushed towards the QPT by a magnetic field applied along the cylinder axis.However,deviation from this behavior was found at low temperatures,signaling the presence of the quantum phase slips.Most importantly,we observed a highly unusual negative slope in the resistance versus temperature curves on the metallic side of the QPT as predicted by the diagrammatic calculation of the dc conductivities in a 1D system near a depairing QPT.Our work suggests that fluctuations from both the phase and the amplitude of the superconducting order parameter are important for the superconductor-to-metal depairing QPT.  相似文献   

19.
正Andreev reflection (AR) [1] refers to a peculiar quasiparticle reflection process that takes place at the interface between a normal metal and a superconductor.Specifically,an electron impinging from the normal metal is reflected back as a hole,which effectively describes that two electrons in the normal metal penetrate into the superconductor and form a Cooper pair.AR dominates the electron transport below the superconducting gap in the superconductor junctions,which is an important experimental approach for the detection of various properties of electronic systems,such as the pairing symmetry of the unconventional superconductors,the spin polarization of the itinerant electrons and most recently,Majorana zero mode in topological systems.  相似文献   

20.
It is shown that mid-to far-infrared (IR) and terahertz (THz) pulse generation via difference-frequency mixing in quantum well (QW) dual-wavelength heterolasers can be rather efficient under the modelocking regime for one or both lasing fields even at room temperature. In such a device, the long-wavelength field is produced in the process of intracavity difference-frequency mixing of two optical fields: continuous wave (CW) and pulsed (or both pulsed), due to the resonant intersubband quantum coherence in QWs, as well as due to the nonresonant second-order semiconductor bulk nonlinearity. The mode-locking regime of the optical generation allows one to significantly enhance the pulsed driving fields in comparison with those under CW operation and, therefore, substantially increase the output difference-frequency power. Within a simple model, an explicit formula for the intensity and shape of the generated IR or THz pulse is derived. It is shown that this method is capable of producing picosecond pulses at a ∼ 1-GHz repetition rate with a peak power of the order of 1 W and ≲0.2 mW at 10 and 50 μm wavelengths, respectively. Original Text ? Astro, Ltd., 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号