首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size.  相似文献   

2.
The novel coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global event that has been challenging governments, health systems, and communities worldwide. Available data from the first months indicated varying patterns of the spread of COVID-19 within American cities, when the spread was faster in high-density and walkable cities such as New York than in low-density and car-oriented cities such as Los Angeles. Subsequent containment efforts, underlying population characteristics, variants, and other factors likely affected the spread significantly. However, this work investigates the hypothesis that urban configuration and associated spatial use patterns directly impact how the disease spreads and infects a population. It follows work that has shown how the spatial configuration of urban spaces impacts the social behavior of people moving through those spaces. It addresses the first 60 days of contagion (before containment measures were widely adopted and had time to affect spread) in 93 urban counties in the United States, considering population size, population density, walkability, here evaluated through walkscore, an indicator that measures the density of amenities, and, therefore, opportunities for population mixing, and the number of confirmed cases and deaths. Our findings indicate correlations between walkability, population density, and COVID-19 spreading patterns but no clear correlation between population size and the number of cases or deaths per 100 k habitants. Although virus spread beyond these initial cases may provide additional data for analysis, this study is an initial step in understanding the relationship between COVID-19 and urban configuration.  相似文献   

3.
In this study, causalities of COVID-19 across a group of seventy countries are analyzed with effective transfer entropy. To reveal the causalities, a weighted directed network is constructed. In this network, the weights of the links reveal the strength of the causality which is obtained by calculating effective transfer entropies. Transfer entropy has some advantages over other causality evaluation methods. Firstly, transfer entropy can quantify the strength of the causality and secondly it can detect nonlinear causal relationships. After the construction of the causality network, it is analyzed with well-known network analysis methods such as eigenvector centrality, PageRank, and community detection. Eigenvector centrality and PageRank metrics reveal the importance and the centrality of each node country in the network. In community detection, node countries in the network are divided into groups such that countries in each group are much more densely connected.  相似文献   

4.
新型冠状病毒肺炎早期时空传播特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
王聪  严洁  王旭  李敏 《物理学报》2020,(8):120-129
通过最新公布的流行病学数据估计了易感者-感染者模型参数,结合百度迁徙数据和公开新闻报道,刻画了疫情前期武汉市人口流动特征,并代入提出的支持人口流动特征的时域差分方程模型进行动力学模拟,得到一些推论:1)未受干预时传染率在一般环境下以95%的置信度位于区间[0.2068,0.2073],拟合优度达到0.999;对应地,基本传染数R0位于区间[2.5510,2.6555];极限环境个案推演的传染率极值为0.2862,相应的R0极值为3.1465;2)百度迁徙规模指数与铁路发送旅客人数的Pearson相关系数达到0.9108,有理由作为人口流动的有效估计;3)提出的模型可有效推演疫情蔓延至外省乃至全国的日期,其中41.38%的预测误差≤1 d,79.31%的预测误差≤3 d,96.55%预测误差≤5 d,总体平均误差约为2.14 d.  相似文献   

5.
The need to provide accurate predictions in the evolution of the COVID-19 epidemic has motivated the development of different epidemiological models. These models require a careful calibration of their parameters to capture the dynamics of the phenomena and the uncertainty in the data. This work analyzes different parameters related to the personal evolution of COVID-19 (i.e., time of recovery, length of stay in hospital and delay in hospitalization). A Bayesian Survival Analysis is performed considering the age factor and period of the epidemic as fixed predictors to understand how these features influence the evolution of the epidemic. These results can be easily included in the epidemiological SIR model to make prediction results more stable.  相似文献   

6.
Ru-Qi Li 《中国物理 B》2021,30(12):120202-120202
Since December 2019, the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade, national policies and the natural environment. To closely monitor the emergence of new COVID-19 clusters and ensure high prediction accuracy, we develop a new prediction framework for studying the spread of epidemic on networks based on partial differential equations (PDEs), which captures epidemic diffusion along the edges of a network driven by population flow data. In this paper, we focus on the effect of the population movement on the spread of COVID-19 in several cities from different geographic regions in China for describing the transmission characteristics of COVID-19. Experiment results show that the PDE model obtains relatively good prediction results compared with several typical mathematical models. Furthermore, we study the effectiveness of intervention measures, such as traffic lockdowns and social distancing, which provides a new approach for quantifying the effectiveness of the government policies toward controlling COVID-19 via the adaptive parameters of the model. To our knowledge, this work is the first attempt to apply the PDE model on networks with Baidu Migration Data for COVID-19 prediction.  相似文献   

7.
We present an analysis of the relationship between SARS-CoV-2 infection rates and a social distancing metric from data for all the states and most populous cities in the United States and Brazil, all the 22 European Economic Community countries and the United Kingdom. We discuss why the infection rate, instead of the effective reproduction number or growth rate of cases, is a proper choice to perform this analysis when considering a wide span of time. We obtain a strong Spearman’s rank order correlation between the social distancing metric and the infection rate in each locality. We show that mask mandates increase the values of Spearman’s correlation in the United States, where a mandate was adopted. We also obtain an explicit numerical relation between the infection rate and the social distancing metric defined in the present work.  相似文献   

8.
We analyze how the COVID-19 pandemic affected the trade of products between countries. With this aim, using the United Nations Comtrade database, we perform a Google matrix analysis of the multiproduct World Trade Network (WTN) for the years 2018–2020, comprising the emergence of the COVID-19 as a global pandemic. The applied algorithms—PageRank, CheiRank and the reduced Google matrix—take into account the multiplicity of the WTN links, providing new insights into international trade compared to the usual import–export analysis. These complex networks analysis algorithms establish new rankings and trade balances of countries and products considering all countries on equal grounds, independent of their wealth, and every product on the basis of its relative exchanged volumes. In comparison with the pre-COVID-19 period, significant changes in these metrics occurred for the year 2020, highlighting a major rewiring of the international trade flows induced by the COVID-19 pandemic crisis. We define a new PageRank–CheiRank product trade balance, either export or import-oriented, which is significantly perturbed by the pandemic.  相似文献   

9.
The economy is a system of complex interactions. The COVID-19 pandemic strongly influenced economies, particularly through introduced restrictions, which formed a completely new economic environment. The present work focuses on the changes induced by the COVID-19 epidemic on the correlation network structure. The analysis is performed on a representative set of USA companies—the S&P500 components. Four different network structures are constructed (strong, weak, typically, and significantly connected networks), and the rank entropy, cycle entropy, averaged clustering coefficient, and transitivity evolution are established and discussed. Based on the mentioned structural parameters, four different stages have been distinguished during the COVID-19-induced crisis. The proposed network properties and their applicability to a crisis-distinguishing problem are discussed. Moreover, the optimal time window problem is analysed.  相似文献   

10.
In this paper, we study the dynamical behaviour of an epidemic on complex networks with population mobility. In our model, the number of people on each node is unrestricted as the nodes of the network are considered as cities, communities, and so on. Because people can travel between different cities, we study the effect of a population's mobility on the epidemic spreading. In view of the population's mobility, we suppose that the susceptible individual can be infected by an infected individual in the same city or other connected cities. Simulations are presented to verify our analysis.  相似文献   

11.
The COVID-19 pandemic caused important health and societal damage across the world in 2020–2022. Its study represents a tremendous challenge for the scientific community. The correct evaluation and analysis of the situation can lead to the elaboration of the most efficient strategies and policies to control and mitigate its propagation. The paper proposes a Multi-Criteria Decision Support (MCDS) based on the combination of three methods: the Group Analytic Hierarchy Process (GAHP), which is a subjective group weighting method; Extended Entropy Weighting Method (EEWM), which is an objective weighting method; and the COmplex PRoportional ASsessment (COPRAS), which is a multi-criteria method. The COPRAS uses the combined weights calculated by the GAHP and EEWM. The sum normalization (SN) is considered for COPRAS and EEWM. An extended entropy is proposed in EEWM. The MCDS is implemented for the development of a complex COVID-19 indicator called COVIND, which includes several countries’ COVID-19 indicators, over a fourth COVID-19 wave, for a group of European countries. Based on these indicators, a ranking of the countries is obtained. An analysis of the obtained rankings is realized by the variation of two parameters: a parameter that describes the combination of weights obtained with EEWM and GAHP and the parameter of extended entropy function. A correlation analysis between the new indicator and the general country indicators is performed. The MCDS provides policy makers with a decision support able to synthesize the available information on the fourth wave of the COVID-19 pandemic.  相似文献   

12.
The global economy is under great shock again in 2020 due to the COVID-19 pandemic; it has not been long since the global financial crisis in 2008. Therefore, we investigate the evolution of the complexity of the cryptocurrency market and analyze the characteristics from the past bull market in 2017 to the present the COVID-19 pandemic. To confirm the evolutionary complexity of the cryptocurrency market, three general complexity analyses based on nonlinear measures were used: approximate entropy (ApEn), sample entropy (SampEn), and Lempel-Ziv complexity (LZ). We analyzed the market complexity/unpredictability for 43 cryptocurrency prices that have been trading until recently. In addition, three non-parametric tests suitable for non-normal distribution comparison were used to cross-check quantitatively. Finally, using the sliding time window analysis, we observed the change in the complexity of the cryptocurrency market according to events such as the COVID-19 pandemic and vaccination. This study is the first to confirm the complexity/unpredictability of the cryptocurrency market from the bull market to the COVID-19 pandemic outbreak. We find that ApEn, SampEn, and LZ complexity metrics of all markets could not generalize the COVID-19 effect of the complexity due to different patterns. However, market unpredictability is increasing by the ongoing health crisis.  相似文献   

13.
The pandemic scenery caused by the new coronavirus, called SARS-CoV-2, increased interest in statistical models capable of projecting the evolution of the number of cases (and associated deaths) due to COVID-19 in countries, states and/or cities. This interest is mainly due to the fact that the projections may help the government agencies in making decisions in relation to procedures of prevention of the disease. Since the growth of the number of cases (and deaths) of COVID-19, in general, has presented a heterogeneous evolution over time, it is important that the modeling procedure is capable of identifying periods with different growth rates and proposing an adequate model for each period. Here, we present a modeling procedure based on the fit of a piecewise growth model for the cumulative number of deaths. We opt to focus on the modeling of the cumulative number of deaths because, other than for the number of cases, these values do not depend on the number of diagnostic tests performed. In the proposed approach, the model is updated in the course of the pandemic, and whenever a “new” period of the pandemic is identified, it creates a new sub-dataset composed of the cumulative number of deaths registered from the change point and a new growth model is chosen for that period. Three growth models were fitted for each period: exponential, logistic and Gompertz models. The best model for the cumulative number of deaths recorded is the one with the smallest mean square error and the smallest Akaike information criterion (AIC) and Bayesian information criterion (BIC) values. This approach is illustrated in a case study, in which we model the number of deaths due to COVID-19 recorded in the State of São Paulo, Brazil. The results have shown that the fit of a piecewise model is very effective for explaining the different periods of the pandemic evolution.  相似文献   

14.
裴伟东  刘忠信  陈增强  袁著祉 《物理学报》2008,57(11):6777-6785
传统的病毒传播模型在无限大无标度网络上不存在病毒传播阈值,即无论病毒的传播速率多么低,病毒始终能够在网络中传播.但研究发现,这个结论是在网络中存在超级传染者的假设下得到的,然而许多真实的无标度网络中并不存在超级传染者.因此,文章提出了一个最大传染能力限定的病毒传播模型,并从理论上证明了在最大传染能力限定的无限大无标度网络上,病毒传播阈值是存在的;同时,也分析了最大传染能力限定下非零传播阈值与有限规模网络下非零传播阈值的本质区别,并解释了为什么人们总是认为传统病毒传播模型对许多真实网络病毒感染程度估计过高的 关键词: 无标度网络 最大传染能力 传播阈值 感染程度  相似文献   

15.
16.
Predicting the way diseases spread in different societies has been thus far documented as one of the most important tools for control strategies and policy-making during a pandemic. This study is to propose a network autoregressive (NAR) model to forecast the number of total currently infected cases with coronavirus disease 2019 (COVID-19) in Iran until the end of December 2021 in view of the disease interactions within the neighboring countries in the region. For this purpose, the COVID-19 data were initially collected for seven regional nations, including Iran, Turkey, Iraq, Azerbaijan, Armenia, Afghanistan, and Pakistan. Thenceforth, a network was established over these countries, and the correlation of the disease data was calculated. Upon introducing the main structure of the NAR model, a mathematical platform was subsequently provided to further incorporate the correlation matrix into the prediction process. In addition, the maximum likelihood estimation (MLE) was utilized to determine the model parameters and optimize the forecasting accuracy. Thereafter, the number of infected cases up to December 2021 in Iran was predicted by importing the correlation matrix into the NAR model formed to observe the impact of the disease interactions in the neighboring countries. In addition, the autoregressive integrated moving average (ARIMA) was used as a benchmark to compare and validate the NAR model outcomes. The results reveal that COVID-19 data in Iran have passed the fifth peak and continue on a downward trend to bring the number of total currently infected cases below 480,000 by the end of 2021. Additionally, 20%, 50%, 80% and 95% quantiles are provided along with the point estimation to model the uncertainty in the forecast.  相似文献   

17.
We analyze the price return distributions of currency exchange rates, cryptocurrencies, and contracts for differences (CFDs) representing stock indices, stock shares, and commodities. Based on recent data from the years 2017–2020, we model tails of the return distributions at different time scales by using power-law, stretched exponential, and q-Gaussian functions. We focus on the fitted function parameters and how they change over the years by comparing our results with those from earlier studies and find that, on the time horizons of up to a few minutes, the so-called “inverse-cubic power-law” still constitutes an appropriate global reference. However, we no longer observe the hypothesized universal constant acceleration of the market time flow that was manifested before in an ever faster convergence of empirical return distributions towards the normal distribution. Our results do not exclude such a scenario but, rather, suggest that some other short-term processes related to a current market situation alter market dynamics and may mask this scenario. Real market dynamics is associated with a continuous alternation of different regimes with different statistical properties. An example is the COVID-19 pandemic outburst, which had an enormous yet short-time impact on financial markets. We also point out that two factors—speed of the market time flow and the asset cross-correlation magnitude—while related (the larger the speed, the larger the cross-correlations on a given time scale), act in opposite directions with regard to the return distribution tails, which can affect the expected distribution convergence to the normal distribution.  相似文献   

18.
Xian-Jia Wang 《中国物理 B》2022,31(8):80204-080204
Having a large number of timely donations during the early stages of a COVID-19 breakout would normally be considered rare. Donation is a special public goods game with zero yield for donors, and it has the characteristics of the prisoners' dilemma. This paper discusses why timely donations in the early stages of COVID-19 occurred. Based on the idea that donation is a strategy adopted by players during interconnection on account of their understanding of the environment, donation-related populations are placed on social networks and the inter-correlation structures in the population are described by scale-free networks. Players in donation-related populations are of four types: donors, illegal beneficiaries, legal beneficiaries, and inactive people. We model the evolutionary game of donation on a scale-free network. Donors, illegal beneficiaries and inactive people learn and update strategies under the Fermi update rule, whereas the conversion between legal beneficiaries and the other three types is determined by the environment surrounding the players. We study the evolution of cooperative action when the agglomeration coefficient, the parameters of the utility function, the noise intensity, the utility coefficient, the donation coefficient and the initial states of the population on the scale-free network change. For population sizes of 50, 100, 150, and 200, we give the utility functions and the agglomeration coefficients for promoting cooperation and study the corresponding steady states and structural characteristics of the population. We identify the best ranges of the noise intensity K, the donation coefficient α and the utility coefficient β for promoting cooperation at different population sizes. Furthermore, with the increase of the population size, the donor traps are found. At the same time, it is discovered that the initial states of the population have a great impact on the steady states; thus the upper and lower triangle phenomena are proposed. We also find that the population size itself is also an important factor for promoting donation, pointing out the direction of efforts to further promote donation and achieve better social homeostasis under the donation model.  相似文献   

19.
A global event such as the COVID-19 crisis presents new, often unexpected responses that are fascinating to investigate from both scientific and social standpoints. Despite several documented similarities, the coronavirus pandemic is clearly distinct from the 1918 flu pandemic in terms of our exponentially increased, almost instantaneous ability to access/share information, offering an unprecedented opportunity to visualise rippling effects of global events across space and time. Personal devices provide “big data” on people’s movement, the environment and economic trends, while access to the unprecedented flurry in scientific publications and media posts provides a measure of the response of the educated world to the crisis. Most bibliometric (co-authorship, co-citation, or bibliographic coupling) analyses ignore the time dimension, but COVID-19 has made it possible to perform a detailed temporal investigation into the pandemic. Here, we report a comprehensive network analysis based on more than 20,000 published documents on viral epidemics, authored by over 75,000 individuals from 140 nations in the past one year of the crisis. Unlike the 1918 flu pandemic, access to published data over the past two decades enabled a comparison of publishing trends between the ongoing COVID-19 pandemic and those of the 2003 SARS epidemic to study changes in thematic foci and societal pressures dictating research over the course of a crisis.  相似文献   

20.
The main research question concerned the identification of changes in the COVID-19 epidemiological situation using fuzzy clustering methods. This research used cross-sectional time series data obtained from the European Centre for Disease Prevention and Control. The identification of country types in terms of epidemiological risk was carried out using the fuzzy c-means clustering method. We also used the entropy index to measure the degree of fuzziness in the classification and evaluate the uncertainty of epidemiological states. The proposed approach allowed us to identify countries’ epidemic states. Moreover, it also made it possible to determine the time of transition from one state to another, as well as to observe fluctuations during changes of state. Three COVID-19 epidemic states were identified in Europe, i.e., stabilisation, destabilisation, and expansion. The methodology is universal and can also be useful for other countries, as well as the research results being important for governments, politicians and other policy-makers working to mitigate the effects of the COVID-19 pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号