首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics of dissipative and coherent NN-body systems, such as a Bose–Einstein condensate, which can be described by an extended Gross–Pitaevskii formalism, is investigated. In order to analyze chaotic and unstable regimes, two approaches are considered: a metric one, based on calculations of Lyapunov exponents, and an algorithmic one, based on the Lempel–Ziv criterion. The consistency of both approaches is established, with the Lempel–Ziv algorithmic found as an efficient complementary approach to the metric one for the fast characterization of dynamical behaviors obtained from finite sequences.  相似文献   

2.
3.
Spatially-periodic patterns are studied in nonlocally coupled Gross–Pitaevskii equation. We show first that spatially periodic patterns appear in a model with the dipole–dipole interaction. Next, we study a model with a finite-range coupling, and show that a repulsively coupled system is closely related with an attractively coupled system and its soliton solution becomes a building block of the spatially-periodic structure. That is, the spatially-periodic structure can be interpreted as a soliton lattice. An approximate form of the soliton is given by a variational method. Furthermore, the effects of the rotating harmonic potential and spin-orbit coupling are numerically studied.  相似文献   

4.
In this paper, we present a minimisation method for computing the ground state of systems of coupled Gross–Pitaevskii equations. Our approach relies on a spectral decomposition of the solution into Hermite basis functions. Inserting the spectral representation into the energy functional yields a constrained nonlinear minimisation problem for the coefficients. For its numerical solution, we employ a Newton-like method with an approximate line-search strategy. We analyse this method and prove global convergence. Appropriate starting values for the minimisation process are determined by a standard continuation strategy. Numerical examples with two- and three-component two-dimensional condensates are included. These experiments demonstrate the reliability of our method and nicely illustrate the effect of phase segregation.  相似文献   

5.
6.
The residual symmetry relating to the truncated Painlev′e expansion of the Kadomtsev–Petviashvili(KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.  相似文献   

7.
This paper addresses the efficient solution of acoustic problems in which the primary interest is obtaining the solution only on restricted portions of the domain but over a wide range of frequencies. The exterior acoustics boundary value problem is approximated using the finite element method in combination with the Dirichlet-to-Neumann (DtN) map. The restriction domain problem is formally posed in transfer function form based on the finite element solution. In order to obtain the solution over a range of frequencies, a matrix-valued Padé approximation of the transfer function is employed, using a two-sided block Lanczos algorithm. This approach provides a stable and efficient representation of the Padé approximation. In order to apply the algorithm, it is necessary to reformulate the transfer function due to the frequency dependency in the nonreflecting boundary condition. This is illustrated for the case of the DtN boundary condition, but there is no restriction on the approach which can also be applied to other radiation boundary conditions. Numerical tests confirm that the approach offers significant computational speed-up.  相似文献   

8.
Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.  相似文献   

9.
10.
《Physics letters. A》2020,384(11):126226
We use a nonrecursive Darboux transformation method to obtain a special hierarchy of rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation, which can govern the propagation of ultrashort optical pulses in a long-haul telecommunication fiber. In terms of the exact rational solutions, we demonstrate several interesting rogue wave dynamics such as rogue wave doublets, quartets and sextets. The modulation instability responsible for the excitation of rogue waves from an unstable continuous background in such a complex nonlinear system is also discussed.  相似文献   

11.
    
The dynamics of vortices in Bose–Einstein condensates of dilute cold atoms can be well formulated by Gross–Pitaevskii equation. To better understand the properties of vortices, a systematic method to solve the nonlinear differential equation for the vortex to very high precision is proposed. Through two-point Padé approximants, these solutions are presented in terms of simple rational functions, which can be used in the simulation of vortex dynamics. The precision of the solutions is sensitive to the connecting parameter and the truncation orders. It can be improved significantly with a reasonable extension in the order of rational functions. The errors of the solutions and the limitation of two-point Padé approximants are discussed. This investigation may shed light on the exact solution to the nonlinear vortex equation.  相似文献   

12.
    
An integrable Gross–Pitaevskii equation with a parabolic potential is presented where particle density ∣u2 is conserved. We also present an integrable vector Gross–Pitaevskii system with a parabolic potential, where the total particle density ${sum }_{j=1}^{n}| {u}_{j}{| }^{2}$ is conserved. These equations are related to nonisospectral scalar and vector nonlinear Schrödinger equations. Infinitely many conservation laws are obtained. Gauge transformations between the standard isospectral nonlinear Schrödinger equations and the conserved Gross–Pitaevskii equations, both scalar and vector cases are derived. Solutions and dynamics are analyzed and illustrated. Some solutions exhibit features of localized-like waves.  相似文献   

13.
Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.  相似文献   

14.
We discuss the Padé approximation to the ππ scattering amplitudes in one-loop chiral perturbation theory.The approximation restores unitarity and can reproduce the correct resonance poles,but the approximation violates crossing symmetry and produces spurious poles on the complex s plane and therefore plagues its predictions in some cases.However we find that one virtual state in the IJ = 20 channel may have physical relevance.  相似文献   

15.
李画眉 《中国物理》2005,14(2):251-256
利用映射方法和一个适当的变换,得到大量的有弱偏置磁场及含时激光场中的非线性Gross-Pitaevskii方程的新解,这些解包括椭圆函数解,椭圆函数叠加解,三角函数解,亮孤子解,暗孤子解和类孤子解。  相似文献   

16.
In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.  相似文献   

17.
    
We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.  相似文献   

18.
花巍  李彬  刘学深 《中国物理 B》2011,20(1):10311-010311
We have studied the dynamics of Bose–Einstein condensate by solving numerically the Gross-Pitaevskii (GP) equation. We examined the periodic behaviour of the condensate in a shifted harmonic potential, and further demonstrated the tunneling effect of a condensate through a Gaussian energy barrier, which is inserted after the condensate has been excited by shifting the harmonic trapping potential to a side. Moreover, it is shown that the initial condensate evolves dynamically into two separate moving condensates after the tunneling time under certain conditions.  相似文献   

19.
    
The (un)forced (un)damped parametric pendulum oscillator (PPO) is analyzed analytically and numerically using some simple, effective, and more accurate techniques. In the first technique, the ansatz method is employed for analyzing the unforced damped PPO and for deriving some optimal and accurate analytical approximations in the form of angular Mathieu functions. In the second approach, some approximations to (un)forced damped PPO are obtained in the form of trigonometric functions using the ansatz method. In the third approach, He's frequency-amplitude principle is applied for deriving some approximations to the (un)damped PPO. In the forth approach, He's homotopy technique is employed for analyzing the forced (un)damped PPO numerically. In the fifth approach, the p-solution Method, which is constructed based on Krylov–Bogoliúbov Mitropolsky method, is introduced for deriving an approximation to the forced damped PPO. In the final approach, the hybrid Padé-finite difference method is carried out for analyzing the damped PPO numerically. All proposed techniques are compared to the fourth-order Runge–Kutta (RK4) numerical solution. Moreover, the global maximum residual distance error is estimated for checking the accuracy of the obtained approximations. The proposed methodologies and approximations can help many researchers in studying and investigating several nonlinear phenomena related to the oscillations that can arise in various branches of science, e.g. waves and oscillations in plasma physics.  相似文献   

20.
吴钦宽 《物理学报》2008,57(5):2654-2657
研究了一类非线性燃烧模型.利用同伦分析方法,得到了该模型的近似解. 关键词:非线性方程燃烧模型同伦分析法近似解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号