首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. Kis  K. C. Smith  J. Kiss  F. Solymosi   《Surface science》2000,460(1-3):190-202
The adsorption and dissociation of CH2I2 were studied at 110 K with the aim of generating CH2 species on the Ru(001) surface. The methods used included X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and work function measurements. Adsorption of CH2I2 is characterized by a work function decrease (0.96 eV at monolayer), indicating that adsorbed CH2I2 has a positive outward dipole moment. Three adsorption states were distinguished: a multilayer (Tp=200 K), a weakly bonded state (Tp=220 K) and an irreversibly adsorbed state. A new feature is the formation of CH3I, which desorbs with Tp=160 K. The adsorption of CH2I2 at 110 K is dissociative at submonolayer, but molecular at higher coverages. Dissociation of the monolayer to CH2 and I proceeded at 198–230 K, as indicated by a shift in the I(3d5/2) binding energy from 620.6 eV to 619.9 eV. A fraction of adsorbed CH2 is self-hydrogenated into CH4 (Tp=220 K), and another one is coupled to di-σ-bonded ethylene, which — instead of desorption — is converted to ethylidyne at 220–300 K. Illumination of the adsorbed CH2I2 initiated the dissociation of CH2I2 monolayer even at 110 K, and affected the reaction pathways of CH2.  相似文献   

2.
High quality gallium nitride thin films have been successfully grown on the Ga-diffused Si(1 1 1) substrates through ammoniating Ga2O3 thin films deposited by r.f. magnetron sputtering. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscope (AFM) and photoluminescence (PL) were used to characterize the synthesized samples. The analyses reveal that the formed films are high quality polycrystalline hexagonal gallium nitride. The as-formed GaN films show a flat surface topography with RMS roughness varied from 29 to 48 Å. The strong near-band-edge-emission peak around 368 nm was observed at room temperature. This is a novel method to fabricate GaN thin films based on the direct reaction between Ga2O3 and NH3 on the Ga-diffused Si(1 1 1) substrates.  相似文献   

3.
Pure and rare earth doped gadolinium oxide (Gd2O3) waveguide films were prepared by a simple sol–gel process and dip-coating method. Gd2O3 was successfully synthesized by hydrolysis of gadolinium acetate. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structure of Gd2O3 films annealed at different temperature ranging from 400 to 750 °C were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Gd2O3 starts crystallizing at about 400 °C and the crystallite size increases with annealing temperature. Oriented growth of (4 0 0) face of Gd2O3 has been observed when the films were deposited on (1 0 0) Si substrate and annealed at 750 °C. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and propagation loss of the film measured by scattering-detection method is about 2 dB/cm. Luminescence properties of europium ions doped films were measured and are discussed.  相似文献   

4.
HfO2 dielectric layers were grown directly on the p-type Si (1 0 0) by metalorganic molecular beam epitaxy (MOMBE). Hafnium tetra-butoxide was used as a Hf precursor and pure oxygen was introduced to form an oxide layer. The properties of the layers with different thicknesses were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and capacitance–voltage (CV) and current–voltage (IV) analyses. XRD and HRTEM results showed that the HfO2 films thinner than 12 nm were amorphous while the films thicker than 12 nm began to crystallize in the tetragonal and the monoclinic phases. The XPS spectra of O 1s show that the O---Si binding energies shifted to the lower binding energy with increasing the HfO2 layer thickness. Moreover, the snap back phenomenon is observed in accumulation capacitance. These changes are believed to be linked with the decomposition of SiO and the crystallization of HfO2 layer during the film growth.  相似文献   

5.
The chromium(II) antimony(III) sulphide, [Cr((NH2CH2CH2)3N)]Sb4S7, was synthesised under solvothermal conditions from the reaction of Sb2S3, Cr and S dissolved in tris(2-aminoethyl)amine (tren) at 438 K. The products were characterised by single-crystal X-ray diffraction, elemental analysis, SQUID magnetometry and diffuse reflectance spectroscopy. The compound crystallises in the monoclinic space group P21/n with a=7.9756(7), b=10.5191(9), c=25.880(2) Å and β=90.864(5)°. Alternating SbS33− trigonal pyramids and Sb3S63− semi-cubes generate Sb4S72− chains which are directly bonded to Cr(tren)2+ pendant units. The effective magnetic moment of 4.94(6)μB shows a negligible orbital contribution, in agreement with expectations for Cr(II):d4 in a 5A ground state. The measured band gap of 2.14(3) eV is consistent with a correlation between optical band gap and framework density that is established from analysis of a wide range of antimony sulphides.  相似文献   

6.
Well-dispersed InP nanocrystals have been synthesized via a hydrothermal reaction of In–ethylenediamine tetraacetic acid (EDTA) complex with red phosphorus and KBH4 in aqueous solution at 160–200 °C for 26 h. The InP nanocrystals were characterized by powder X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD patterns showed (1 1 1), (2 0 0), (2 2 0), (3 1 1), (2 2 2), (4 0 0) and (3 3 1) diffraction lines of the cubic InP nanocrystals. The TEM study revealed that the morphology of InP nanocrystals are of well-dispersed spherical shape. The size of InP nanocrystals can be controlled by changing the reaction temperature. The average InP nanocrystallites diameter is increased from 8.7 to 15.8 nm as the temperature increases from 160 to 200 °C. The Raman spectrum showed the transverse-optic (TO) and longitudinal-optic (LO) mode from InP nanocrystallites, and the LO and TO modes shift to lower frequencies with a decrease in the size of InP nanocrystals. The EDTA plays a key role in the nucleation and growth of InP nanocrystals, and the reaction mechanism is discussed.  相似文献   

7.
Zn1−xMnxS epilayers were grown on GaAs (1 0 0) substrates by hot-wall epitaxy. X-ray diffraction (XRD) patterns revealed that all the epilayers have a zincblende structure. The optical properties were investigated using spectroscopic ellipsometry at 300 K from 3.0 to 8.5 eV. The obtained data were analyzed for determining the critical points of pseudodielectric function spectra, (E) = 1(E) + i2(E), such as E0, E0 + Δ0, and E1, and three E2 (Σ, Δ, Γ) structures at a lower Mn composition range. These critical points were determined by analytical line-shapes fitted to numerically calculated derivatives of their pseudodielectric functions. The observation of new peaks, as well as the shifting and broadening of the critical points of Zn1−xMnxS epilayers, were investigated as a function of Mn composition by ellipsometric measurements for the first time. The characteristics of the peaks changed with increasing Mn composition. In particular, four new peaks were observed between 4.0 and 8.0 eV for Zn1−xMnxS epilayers, and their characteristics were investigated in this study.  相似文献   

8.
利用水热合成法,以柔性的乙二胺四乙酸(H4EDTA)为配体、氧化镨以及氯化镉为金属源合成了一种镨-镉异金属-有机配合物[Pr2Cd3(EDTA)3(H2O)11]·14H2O (1)。通过X射线单晶衍射确定化合物1的结构,该化合物属单斜晶系的C2空间群,a=16.154(3) Å,b=14.863(3) Å,c=14.875(3) Å,β=115.855(3)°,V=3214.2(9) Å3, Z=2,化合物1的结构中存在纳米尺寸大小的“心形”Pr6Cd6O12轮簇。其中Cd2+的配位数为7,采取单帽三棱柱的配位构型,而Pr3+采取十配位双帽四方反棱柱的构型。EDTA4-配体的四个羧基全部去质子化,与一个Cd2+和两个Pr3+配位,其中4个羧基氧原子和2个氮原子都与Cd2+配位,两个羧基分别桥连1个Pr3+。Pr3+和Cd2+通过μ2-O氧原子交替连接形成Pr6Cd6O12轮簇,每个Pr6Cd6O12轮簇与附近的6个Pr6Cd6O12轮簇共边连接,从而形成一个二维(6, 3)层状结构。二维层再通过…AAA…类型的堆积方式形成三维超分子结构。游离水分子填充在二维层空隙中,与羧基以及配位水分子之间形成比较强的O-H…O氢键,这些氢键有利于结构的稳定。通过热重分析、稳态荧光光谱、热微扰二维红外相关光谱(2D-IR COS)、固体紫外-可见漫反射光谱等手段进一步对化合物1的谱学性能进行表征。在红外光谱上,由于存在大量的氢键,化合物的红外光谱在3 680~2 640 cm-1波数范围内出现宽而强的吸收谱带。同时配体H4EDTA中的羧基脱去了质子氢,并且与金属离子发生配位,因此化合物1中羧基的C=O双键的伸缩振动吸收峰与未配位配体中的C=O双键的伸缩振动吸收峰相比,向低波数移动,在1 527 cm-1波数处出现吸收峰。固体荧光测试显示在325 nm的紫外光照射下,配合物1能发出强的360 nm左右的荧光,主要是由能量在Cd2+和EDTA4-之间发生明显的LMCT跃迁转移引起的,因此化合物1可作为一类潜在的发光材料。热微扰下的二维红外光谱显示,由于水分子与羧基及水分子之间存在氢键,使得O-H的伸缩振动吸收峰对热的微扰响应比较敏感。紫外-可见光谱测试显示化合物1在位于216 nm处出现很强的紫外吸收峰,归属于化合物1中EDTA4-配体的中n→σ*跃迁及π→π*,位于444, 468和484 nm的弱吸收峰,归属为Pr3+的f-f跃迁。  相似文献   

9.
The effects of annealing on structure and laser-induced damage threshold (LIDT) of Ta2O5/SiO2 dielectric mirrors were investigated. Ta2O5/SiO2 multilayer was prepared by ion beam sputtering (IBS), then annealed in air under the temperature from 100 to 400 °C. Microstructure of the samples was characterized by X-ray diffraction (XRD). Absorption of the multilayer was measured by surface thermal lensing (STL) technique. The laser-induced damage threshold was assessed using 1064 nm free pulsed laser at a pulse length of 220 μs.

It was found that the center wavelength shifted to long wavelength gradually as the annealing temperature increased, and kept its non-crystalline structure even after annealing. The absorbance of the reflectors decreased after annealing. A remarkable increase of the laser-induced damage threshold was found when the annealing temperature was above 250 °C.  相似文献   


10.
Superhard nanocomposite nc-TiC/a-C:H films, with an excellent combination of high elastic recovery, low friction coefficient and good H/E ratio, were prepared by filtered cathodic vacuum arc technique using the C2H2 gas as the precursor. The effect of C2H2 flow rate on the microstructure, phase composition, mechanical and tribological properties of nanocomposite nc-TiC/a-C:H films have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy disperse spectroscopy (EDS), microindentation and tribotester measurements. It was observed that the C2H2 flow rate significantly affected the Ti content and hardness of films. Furthermore, by selecting the proper value for C2H2 flow rate, 20 sccm, one can deposit the nanocomposite film nc-TiC/a-C:H with excellent properties such as superhardness (66.4 GPa), high elastic recovery (83.3%) and high H/E ratio (0.13).  相似文献   

11.
Thin Ca films were evaporated on Si(1 1 1) under UHV conditions and subsequently annealed in the temperature range 200–650 °C. The interdiffusion of Ca and Si was examined by ex situ Auger depth profiling. In situ monitoring of the Si 2p core-level shift by X-ray photoemission spectroscopy (XPS) was employed to study the silicide formation process. The formation temperature of CaSi2 films on Si(1 1 1) was found to be about 350 °C. Epitaxial growth takes place at T≥400 °C. The morphology of the films, measured by atomic force microscopy (AFM), was correlated with their crystallinity as analyzed by X-ray diffraction (XRD). According to measurements of temperature-dependent IV characteristics and internal photoemission the Schottky-barrier height of CaSi2 on Si(1 1 1) amounts to qΦBn=0.25 eV on n-type and to qΦBp=0.82 eV on p-type silicon.  相似文献   

12.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

13.
The growth of PbI2 precipitates on single crystal substrates from colloidal solutions has been investigated with in air scanning tunneling microscopy and synchrotron-based X-ray photoelectron spectroscopy. The PbI2 growth on Rh(1 0 0) results in nano-clusters with lateral dimensions between 30 and 60 Å, consistent with earlier reports. However, the growth of PbI2 on a well-ordered iodinated Rh(1 0 0), denoted as (√2×√2)R45°-I, leads to atomically smooth PbI2 films having a hexagonal symmetry with lattice constant identical to the bulk value of 4.5 Å. The heteroepitaxy is believed to be effected by the atomic iodine monolayer that helps to accommodate large lattice mismatch between PbI2 and Rh surface with short-range van der Waals interaction.  相似文献   

14.
Th Seyller  D Borgmann  G Wedler   《Surface science》1998,400(1-3):63-79
The interaction of CO2 with Cs-promoted Fe(110) at 85 K as well as temperature-dependent reactions between 100 and 700 K have been studied by means of ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). Several surface species could be detected at 85 K, i.e. carbon monoxide (CO), carbonate (COn3), physisorbed linear carbon dioxide (COlin2) and very small amounts of oxidic oxygen (Oox). An oxalate species (C2Om4) could not be identified definitively, but from comparison with the literature there is evidence that C2Om4 is present. Increasing the temperature after saturation with CO2 leads to a complicated reaction behaviour. CO2 either desorbs or dissociates into CO and COn3 or forms C2Om4 at temperatures between 85 and 160 K. Above 160 K C2Om4, decomposes in parallel reactions into CO2, COn3 and CO. Above 320 K, adsorbed CO either desorbs into the gas phase or dissociates into C and O. In the temperature region between 500 and 700 K a recombination of C and O to CO and the desorption of Cs take place. As in the case of Fe(110)/K+CO2, at high alkali coverages two carbonate species could be detected which dissociate upon heating at different temperatures. The system Fe(110)/Cs+CO2 is proved to be very similar to the system Fe(110)/K+CO2.  相似文献   

15.
The polycrystalline sample of LiFe1/2Ni1/2VO4 was prepared by a standard solid-state reaction technique and confirmed by X-ray diffractometry. LiFe1/2Ni1/2VO4 has orthorhombic crystal structure whose dielectric and electric modulus properties were studied over a wide frequency range (100 Hz–1 MHz) at different temperatures (296–623 K) using a complex impedance spectroscopy (CIS) technique. The frequency and temperature dependence of dielectric constant (εr) and tangent loss (tan δ) of LiFe1/2Ni1/2VO4 are studied. The variation of εr as a function frequency at different temperatures exhibits a dispersive behavior at low frequencies. The variation of the εr as a function of temperature at different frequencies shows the dielectric anomaly in εr at 498 K with maximum value of dielectric constant 274.49 and 96.86 at 100 kHz and 1 MHz, respectively. Modulus analysis was carried out to understand the mechanism of the electrical transport process, which indicates the non-exponential type of conductivity relaxation in the material. The activation energy calculated from electric modulus spectra is 0.38 eV.  相似文献   

16.
The structure and NO reactivity of Zr-deposited Pd surfaces were investigated by X-ray photoelectron spectroscopy, low-energy electron diffraction, infrared reflection absorption spectroscopy, and temperature-programmed desorption. Zr on Pd(1 0 0) was oxidized to ZrO2 by exposure to O2 at 773 K. Heating at 823 K in a vacuum led to decomposition of ZrO2 to Zr metal and O2. The activation energy for ZrO2 decomposition changed remarkably at ΘZr = 0.4. For ΘZr > 0.4, a hexagonal structure was observed for ZrO2/Pd(1 0 0); no ordered structure was observed for ΘZr < 0.4. Deposited Zr had no significant effect on the adsorption and decomposition of NO on Pd(1 0 0) but resulted in a creation of new NO dissociation sites on Pd(3 1 1). Zr on Pd(3 1 1) was oxidized to ZrOX by oxygen produced from NO dissociation. Heating at 823 K in a vacuum led to decomposition of ZrOX to Zr metal and O2.  相似文献   

17.
The thickness dependence of microstructures of La0.9Sr0.1MnO3 (LSMO) thin films grown on exact-cut and miscut SrTiO3 (STO) substrates, respectively, was investigated by high-angle X-ray diffraction (HXRD), X-ray small-angle reflection (XSAR), X-ray reciprocal space mapping and atomic force microscopy (AFM). Results show that the LSMO films are in pseudocubic structure and are highly epitaxial [0 0 1]-oriented growth on the (0 0 1) STO substrates. The crystalline quality of the LSMO film is improved with thickness. The epitaxial relationship between the LSMO films and the STO substrates is [0 0 1]LSMO[0 0 1]EXACT-STO, and the LSMO films have a slight mosaic structure along the qx direction for the samples grown on the exact-cut STO substrates. However, an oriented angle of about 0.24° exists between [0 0 1]LSMO and [0 0 1]MISCUT-STO, and the LSMO films have a mosaic structure along the qz direction for that grown on the miscut STO substrates. The mosaic structure of both groups of the samples tends to reduce with thickness. The diffraction intensity of the (0 0 4) peaks increases with thickness of the LSMO film. The XSAR and AFM observations show that for both groups, the interface is sharp and the surface is rather smooth. The mechanism was discussed briefly.  相似文献   

18.
The reaction of the ligands, ethylenediaminetetraacetic acid terasodium salt (Na4EDTA) and N-N heterocyclic diamines like2,2’-bipyridine (bipy) with iron(Ⅱ) sulfate with 1∶2∶2 stoichiometric ratios form the mononuclear ternary complex of formulae, [Fe2(EDTA)(bipy)2] at pH~7. The FTIR and Raman laser spectra of the iron(Ⅱ) complex show that 2,2’-bipyridine is present asa bidentate ligand and the ethylenediaminetetraacetic acid terasodium salt as monodentate carboxylate anion. The electronic spectra and magnetic moments data suggest the six coordination number. It has two iron(Ⅱ) centers in octahedral environments, which are interlinked by carboxylato-O atoms of ethylenediaminetetraacetate and by nitrogen atoms of the two 2,2-bipyridine ligands in a chelating mode. Thermal analysis study show thatiron(Ⅱ) complex containing EDTA and 2,2’-bipyridine on its thermalde composition form the corresponding Fe2O3 oxide in nano size at the temperature range ~475 ℃. The iron(Ⅱ) complex was performed as a convenient low cost precursor for the preparation of Fe2O3 nanoparticles by the the thermal decomposition method. The iron(Ⅲ) oxide composition has been discussedusing FTIR, X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX).  相似文献   

19.
The roughening of interfaces as a function of layer thickness and magneto transport properties have been investigated on sputter-deposited Fe/Ni75B25 multilayer films. X-ray reflectivity data were recorded for Ni75B25(72 nm) film and for [Fe(2 nm)/Ni75B25(2 nm)]16 and [Fe(4 nm)/Ni75B25(4 nm)]8 multilayer films. A power law dependence of the interfacial width of growing Fe/Ni75B25 interfaces was observed. The resulting growth exponents β were found to be in the range of 0.55–0.58 in the initial growth stage of the multilayer with lower Fe/Ni75B25 repetition thickness and at approximately 0.34 for multilayer with higher repetition thickness. The growth exponents were compared with theoretical calculations. High resolution electron microscopy revealed the columnar growth of the Fe/Ni75B25 multilayer. Additionally, an increase of magnetoresistance was observed by the multilayering of Ni75B25 films with Fe interlayers.  相似文献   

20.
Transparent conducting oxide thin film CdTe-doped indium oxide (In2O3) has been grown by pulsed-laser deposition from a target of CdTe powder embedded in metallic indium. The electro-optical and structural properties were investigated as a function of oxygen partial pressure (PO2) and substrate temperature (Ts). A film deposited at Ts=420 °C and PO2=4 Pa shows the minimum resistivity 7.5×10−4 Ω cm, its optical transmission is 83% and the carrier concentration was 8.9×1020 cm3. The optical band gap and the average roughness of that sample were 3.6 eV and 6.45 Å, respectively. X-ray diffraction studies indicated that the films were polycrystalline. This material is a good candidate for being used as transparent conductor in the CdTe–CdS solar cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号