首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colored tensor models have been recently shown to admit a large N expansion, whose leading order encodes a sum over a class of colored triangulations of the D-sphere. The present paper investigates in details this leading order. We show that the relevant triangulations proliferate like a species of colored trees. The leading order is therefore summable and exhibits a critical behavior, independent of the dimension. A continuum limit is reached by tuning the coupling constant to its critical value while inserting an infinite number of pairs of D-simplices glued together in a specific way. We argue that the dominant triangulations are branched polymers.  相似文献   

2.
Colored tensor models generalize matrix models in higher dimensions. They admit a 1/N expansion dominated by spherical topologies and exhibit a critical behavior strongly reminiscent of matrix models. In this paper we generalize the colored tensor models to colored models with generic interaction, derive the Schwinger Dyson equations in the large N limit and analyze the associated algebra of constraints satisfied at leading order by the partition function. We show that the constraints form a Lie algebra (indexed by trees) yielding a generalization of the Virasoro algebra in arbitrary dimensions.  相似文献   

3.
S. Rubin  J. Feinberg  A. Mann 《Physica A》2007,384(2):335-345
We study the Casimir effect at finite temperature for a massless scalar field in the parallel plates geometry in N spatial dimensions, under various combinations of Dirichlet and Neumann boundary conditions on the plates. We show that in all these cases the entropy, in the limit where energy equipartitioning applies, is a geometrical factor whose sign determines the sign of the Casimir force.  相似文献   

4.
Consider a set of N cities randomly distributed in the bulk of a hypercube with d dimensions. A walker, with memory μ, begins his route from a given city of this map and moves, at each discrete time step, to the nearest point, which has not been visited in the preceding μ steps. After reviewing the more interesting general results, we consider one-dimensional disordered media and show that the walker needs not to have full memory of its trajectory to explore the whole system, it suffices to have memory of order lnN/ln2.  相似文献   

5.
We present in this paper a new 3D half-moment model for radiative transfer in a gray medium, called the model, which uses maximum entropy closure. This model is a generalization to 3D of the 1D version recently proposed in (J. Comp. Phys. 180 (2002) 584). The direction space Ω is divided into two pieces, Ω+ and Ω-, in a dynamical way by the plane perpendicular to the total radiative flux, and the half moments are defined from these subspaces. The model closure and the integrations of the radiative transfer equation performed on the moving Ω± spaces are detailed. 1D planar results, which have motivated the extension of the model of (J. Comp. Phys. 180 (2002) 584) to multi-dimensions, are shown. These results are very good. The model is thereafter derived for 3D spherically symmetric geometry, where the correctness of the non-trivial border terms can be checked. Two 3D spherically symmetric problems are numerically solved in order to show the accuracy of the closure and the role of the border terms. Once again, compared to the solution obtained with a ray tracing solver, results are very good. From the 3D half-moment model, a new moment model, called , is derived for the particular case of a 3D hot and opaque source radiating into a cold medium, for applications such as simulations of stellar atmospheres and fires. Two-dimensional numerical results are presented and compared to those obtained solving the RTE and with other moment models. They demonstrate the very good accuracy of the model, its good convergence properties, and better prediction compared to all other existing moment models in its domain of applicability.  相似文献   

6.
7.
A proximity effect in an s-wave superconductor/ferromagnet (SC/F) junction is theoretically studied using the second order perturbation theory for the tunneling Hamiltonian and Green's function method. We calculate a pair amplitude induced by the proximity effect in a weak ferromagnetic metal (FM) and a half-metal (HM). In the SC/FM junction, it is found that a spin-singlet pair amplitude (Ψs) and spin-triplet pair amplitude (Ψt) are induced in FM and both amplitudes depend on the frequency in the Matsubara representation. Ψs is an even function and Ψt is an odd function with respect to the Matsubara frequency (ωn). In the SC/HM junction, we examine the proximity effects by taking account of magnon excitations in HM. It is found that the triplet-pair correlation is induced in HM. The induced pair amplitude in HM shows a damped oscillation as a function of the position and contains the terms of even and odd functions of ωn as in the case of the SC/FM junction. We discuss that in our tunneling model the pair amplitude of even function of ωn only contributes to a Josephson current.  相似文献   

8.
Diamond-like carbon (DLC) films were deposited on Si(1 0 0) substrates using plasma deposition technique. The deposited films were irradiated using 2 MeV N+ ions at fluences of 1×1014, 1×1015 and 5×1015 ions/cm2. Samples have been characterized by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Analysis of Raman spectra shows a gradual shift of both D and G band peaks towards higher frequencies along with an increase of the intensity ratio, I(D)/I(G), with increasing ion fluence in irradiation. These results are consistent with an increase of sp2 bonding. XPS results also show a monotonic increase of sp2/sp3 hybridization ratio with increasing ion fluence. Plan view TEM images show the formation of clusters in the irradiated DLC films. HRTEM micrographs from the samples irradiated at a fluence of 5×1015 ions/cm2 show the lattice image with an average interplanar spacing of 0.34 nm, revealing that the clusters are graphite clusters. The crystallographic planes in these clusters are somewhat distorted compared to the perfect graphite structure.  相似文献   

9.
After Xiao et al. [W.-K. Xiao, J. Ren, F. Qi, Z.W. Song, M.X. Zhu, H.F. Yang, H.Y. Jin, B.-H. Wang, Tao Zhou, Empirical study on clique-degree distribution of networks, Phys. Rev. E 76 (2007) 037102], in this article we present an investigation on so-called k-cliques, which are defined as complete subgraphs of k (k>1) nodes, in the cooperation-competition networks described by bipartite graphs. In the networks, the nodes named actors are taking part in events, organizations or activities, named acts. We mainly examine a property of a k-clique called “k-clique act degree”, q, defined as the number of acts, in which the k-clique takes part. Our analytic treatment on a cooperation-competition network evolution model demonstrates that the distribution of k-clique act degrees obeys Mandelbrot distribution, P(q)∝(q+α)γ. To validate the analytical model, we have further studied 13 different empirical cooperation-competition networks with the clique numbers k=2 and k=3. Empirical investigation results show an agreement with the analytic derivations. We propose a new “heterogeneity index”, H, to describe the heterogeneous degree distributions of k-clique and heuristically derive the correlation between H and α and γ. We argue that the cliques, which take part in the largest number of acts, are the most important subgraphs, which can provide a new criterion to distinguish important cliques in the real world networks.  相似文献   

10.
Ya-Ting Lee  Young-Fo Chang 《Physica A》2008,387(21):5263-5270
Reduction in b-values before a large earthquake is a very popular topic for discussion. This study proposes an alternative sandpile model being able to demonstrate reduction in scaling exponents before large events through adaptable long-range connections. The distant connection between two separated cells was introduced in the sandpile model. We found that our modified long-range connective sandpile (LRCS) system repeatedly approaches and retreats from a critical state. When a large avalanche occurs in the LRCS model, accumulated energy dramatically dissipates and the system simultaneously retreats from criticality. The system quickly approaches the critical state accompanied by the increase in the slopes of the power-law frequency-size distributions of events. Afterwards, and most interestingly, the power-law slope declines before the next large event. The precursory b-value reduction before large earthquakes observed from earthquake catalogues closely mimics the evolution in power-law slopes for the frequency-size distributions of events derived in the LRCS models. Our paper, thus, provides a new explanation for declined b-values before large earthquakes.  相似文献   

11.
L. Acedo  Abraham J. Arenas 《Physica A》2010,389(5):1151-1157
In this article, we generalize a recently proposed method to obtain an exact general solution for the classical Susceptible, Infected, Recovered and Susceptible (SIRS) epidemic mathematical model. This generalization is based upon the nonlinear coupling of two frequencies in an infinite modal series solution. It is shown that these series provide a nonstandard approach in order to obtain an accurate analytical solution for the classical SIRS epidemic model. Numerical results of the SIRS epidemic model for real and complex frequencies are included in order to test the validity and reliability of the method. This method could be applied to a wide class of models in physics, chemistry or engineering.  相似文献   

12.
The ABC effect-an intriguing low-mass enhancement in the ππ invariant mass spectrum-is known from inclusive measurements of two-pion production in nuclear fusion reactions. First exclusive measurements carried out at CELSIUS-WASA for the fusion reactions leading to d or 3He reveal this effect to be a σ-channel phenomenon associated with the formation of a ΔΔ system in the intermediate state and combined with a resonance-like behavior in the total cross-section. Together with the observation that the differential distributions do not change in shape over the resonance region the features fulfill the criteria of an isoscalar s-channel resonance in pn and NNππ systems, if the two emitted nucleons are bound. It obviously is robust enough to survive in nuclei as a dibaryonic resonance configuration. In this context also the phenomenon of NΔ resonances is reexamined.  相似文献   

13.
Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga1−xAlxAs QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.  相似文献   

14.
Magic islands for extra-stable nuclei in the midst of the sea of fission-instability were predicted to be around Z=114, 124 or, 126 with N=184, and Z=120, with N=172. Whether these fission-survived superheavy nuclei with high Z and N would live long enough for detection or, undergo α-decay in a very short time, remains an open question. α-decay half lives of nuclei with 130≥Z≥100 have been calculated in a WKB framework using density-dependent M3Y interaction with Q-values from different mass formulae. The results are in excellent agreement with the experimental data. Fission survived Sg nuclei with Z=106, N=162 is predicted to have the highest α-decay half life (∼3.2 h) in the Z=106-108, N=160-164 region called small island/peninsula. Superheavy nuclei with Z>118 are found to have α-decay half lives of the order of microseconds or less.  相似文献   

15.
We study some analytical properties of the solutions of the non-perturbative renormalization group flow equations for a scalar field theory with Z2 symmetry in the ordered phase, i.e. at temperatures below the critical temperature. The study is made in the framework of the local potential approximation. We show that the required physical discontinuity of the magnetic susceptibility χ(M) at MM0 (M0 spontaneous magnetization) is reproduced only if the cut-off function which separates high and low energy modes satisfies to some restrictive explicit mathematical conditions; we stress that these conditions are not satisfied by a sharp cut-off in dimensions of space d<4.By generalizing a method proposed earlier by Bonanno and Lacagnina [Nucl. Phys. B 693 (2004) 36] to any kind of cut-off we propose to solve numerically the renormalization group flow equations for the threshold functions rather than for the local potential. It yields an algorithm sufficiently robust and precise to extract universal as well as non-universal quantities from numerical experiments at any temperature, in particular at sub-critical temperatures in the ordered phase. Numerical results obtained for the φ4 potential with three different cut-off functions are reported and compared. The data confirm our theoretical predictions concerning the analytical behavior of χ(M) at MM0.Fixed point solutions of the adimensioned renormalization group flow equations are also obtained in the same vein, that is by solving the fixed points equations and the associated eigenvalue problem for the threshold functions rather than for the potential. We report high precision data for the odd and even spectra of critical exponents for different cut-offs obtained in this way.  相似文献   

16.
We present ab initio calculation results for electron-phonon (e-ph) contribution to hole lifetime broadening of the surface state on Al(0 0 1). We show that e-ph coupling in this state is significantly stronger than in bulk Al at the Fermi level. It makes the e-ph decay channel very important in the formation of the hole decay in the surface state at . We also present the results for e-e lifetime broadening in a quantum-well state in 1 ML K/Cu(1 1 1). We show that this contribution is not negligible and is much larger than that in a surface state on Ag(1 1 1).  相似文献   

17.
The KPII equation is an integrable nonlinear PDE in 2+1 dimensions (two spatial and one temporal), which arises in several physical circumstances, including fluid mechanics, where it describes waves in shallow water. It provides a multidimensional generalisation of the renowned KdV equation. In this work, we employ a novel approach recently introduced by one of the authors in connection with the Davey-Stewartson equation (Fokas (2009) [13]), in order to analyse the initial-boundary value problem for the KPII equation formulated on the half-plane. The analysis makes crucial use of the so-called d-bar formalism, as well as of the so-called global relation. A novel feature of boundary as opposed to initial value problems in 2+1 is that the d-bar formalism now involves a function in the complex plane which is discontinuous across the real axis.  相似文献   

18.
We use a variational approach with strictly strong-correlated constraint to gain insight into low-energy states of t-t-t-J model in the electron-doped regime. Compared with the recent results on the electron-doped cuprates obtained by angle-resolved photoemission spectroscopy (ARPES), we show that based on the long-range ordered antiferromagnetic metallic state prohibiting vacant sites, our results lead to qualitatively similar trends in ARPES spectra and Fermi surface topology. Additionally, the results about the evolution of the energy gap and spectral weight as a function of doping will be discussed.  相似文献   

19.
We explore the pattern of frequency-dependent linear and non-linear optical (NLO) response of one electron quantum dots harmonically confined in two dimensions. For some fixed values of transverse magnetic field strength (ωc), and harmonic confinement potential (ω0), the influence of effective mass (m*) of the system and the symmetry breaking anharmonic interaction on the frequency-dependent linear (α), and the first (β), and second (γ) NLO responses of the dot is computed through linear variational route. The investigation reveals interesting roles played by the anharmonic interaction and effective mass in modulating the response properties.  相似文献   

20.
We have investigated the differential conductance spectra of the point contacts between the heavy-fermion superconductor CeCoIn5 and Pt. Many of them show a double-maximum structure that indicates the superconducting energy gap Δ. The Δ values derived using Blonder-Tinkham-Klapwijk model, however, varies from 0.47 to 0.77 meV, and yet they are within the scatter of the reported values. The evolution of Δ below Tc is slow as compared with that of BCS gap probably reflecting the unconventional superconductivity in CeCoIn5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号