首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have investigated the hidden conformal symmetry of generic non-extremal rotating black holes in the five-dimensional Gödel universe. In a range of parameters, the low-frequency massless scalar wave equation in the “near region” can be described by an SL(2, R) L × SL(2, R) R conformal symmetry. We further found that the microscopic entropy via Cardy formula matches the macroscopic Bekenstein-Hawking entropy and the absorption cross section for the massless scalar also agrees with the one for the two dimensional finite temperature conformal field theory (CFT). All these evidences support the conjecture that the generic non-extremal rotating black hole immersed in the Gödel universe can be dual to a two dimensional finite temperature CFT. In addition, we have reformulated the first laws of thermodynamics associated with the inner and outer horizons of the rotating Gödel-type black holes into the forms of conformal thermodynamics.  相似文献   

2.
3.
Considering gravitational and gauge anomalies at the horizon, a new method to derive Hawking radiation from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza–Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.  相似文献   

4.
We study the near horizon geometry of charged rotating black holes in toroidal compactifications of heterotic string theory. We analyze the extremal vanishing horizon (EVH) limit for these black hole solutions and we will show that the near horizon geometry develops an AdS3 throat. Furthermore, we will show that the near horizon limit of near EVH black holes has a BTZ factor. We also comment on the CFT dual to this near horizon geometry.  相似文献   

5.
6.
Rotating maximal black holes in four-dimensional de Sitter space, for which the outer event horizon coincides with the cosmological horizon, have an infinite near-horizon region described by the rotating Nariai metric. We show that the asymptotic symmetry group at the spacelike future boundary of the near-horizon region contains a Virasoro algebra with a real, positive central charge. This is evidence that quantum gravity in a rotating Nariai background is dual to a two-dimensional Euclidean conformal field theory. These results are related to the Kerr/CFT correspondence for extremal black holes, but have two key differences: one of the black hole event horizons has been traded for the cosmological horizon, and the near-horizon geometry is a fiber over dS2 rather than AdS2.  相似文献   

7.
We extend the recently proposal of hidden conformal symmetry to the self-dual warped AdS3 black holes in topological massive gravity. It is shown that the wave equation of massive scalar field with sufficient small angular momentum can be reproduced by the SL(2, R) Casimir quadratic operator. Due to the periodic identification in the φ direction, it is found that only the left section of hidden conformal symmetry is broken to U(1), while the right section is unbroken, which only gives the left temperature of dual CFT. As a check of the dual CFT conjecture of self-warped AdS3 black hole, we further compute the Bekenstein–Hawking entropy and absorption cross section and quasinormal modes of scalar field perturbation and show these are just of the forms predicted by the dual CFT.  相似文献   

8.
The AdS/CFT correspondence may give a new way of understanding field theories in extreme conditions, as in the quark–gluon plasma phase of quark matter. The correspondence normally involves asymptotically AdS black holes with dual field theories which are defined on locally flat boundary spacetimes; the implicit assumption is that the distortions of spacetime which occur under extreme conditions do not affect the field theory in any unexpected way. However, AdS black holes are [to varying degrees] fragile, in the sense that they become unstable to stringy effects when their event horizons are sufficiently distorted. This implies that field theories on curved backgrounds may likewise be unstable in a suitable sense. We investigate this phenomenon, focussing on the “fragility” of AdS5 black holes with flat event horizons. We find that, when they are distorted, these black holes are always unstable in string theory. This may have consequences for the detailed structure of the quark matter phase diagram at extreme values of the spacetime curvature.  相似文献   

9.
10.
Using fiber bundle theory, we construct the universal covering group of U(n),U(n), and show that U(n) is isomorphic to the semidirect product SU(n) ∝.We give a bijection between the set of projective representations of U(n) and theset of equivalence classes of certain unitary representations of SU(n) ∝.Applying Bargmann's theorem, we give explicit expressions for the liftings ofprojective representations of U(n) to unitary representations of SU(n) ∝. Forcompleteness, we discuss the topological and group theoretic relations betweenU(n), SU(n), U(t), and Z n .  相似文献   

11.
Motivated by the well-known charged BTZ black holes, we look for (2 + 1)-dimensional solutions of F(R) gravity. At first we investigate some near horizon solutions and after that we obtain asymptotically Lifshitz black hole solutions. Finally, we discuss about rotating black holes with exponential form of F(R) theory.  相似文献   

12.
This is the second part of a paper dealing with the “internal” (gauge) symmetry of the Wess–Zumino–Novikov–Witten (WZNW) model on a compact Lie group G. It contains a systematic exposition, for G = SU(n), of the canonical quantization based on the study of the classical model (performed in the first part) following the quantum group symmetric approach first advocated by L.D. Faddeev and collaborators. The internal symmetry of the quantized model is carried by the chiral WZNW zero modes satisfying quadratic exchange relations and an n-linear determinant condition. For generic values of the deformation parameter the Fock representation of the zero modes’ algebra gives rise to a model space of U q (sl(n)). The relevant root of unity case is studied in detail for n = 2 when a “restricted” (finite dimensional) quotient quantum group is shown to appear in a natural way. The module structure of the zero modes’ Fock space provides a specific duality with the solutions of the Knizhnik–Zamolodchikov equation for the four point functions of primary fields suggesting the existence of an extended state space of logarithmic CFT type. Combining left and right zero modes (i.e., returning to the 2D model), the rational CFT structure shows up in a setting reminiscent to covariant quantization of gauge theories in which the restricted quantum group plays the role of a generalized gauge symmetry.  相似文献   

13.
《Nuclear Physics B》1996,460(1):167-177
We use the classification of complex line bundles over S2 and the Grothendieck splitting theorem to find a range of infinite sets of U(N)-magnetic monopoles at N ⩾ 1 on 4D black holes of the Schwarzschild and Reissner-Nordström types. We estimate the monopole masses and show that under certain conditions these monopoles might exist as quantum objects residing in the black holes under consideration.  相似文献   

14.
The nonlinear realization of conformal so(2,d) symmetry for relativistic systems and the dynamical conformal so(2,1) symmetry of nonrelativistic systems are investigated in the context of AdS/CFT correspondence. We show that the massless particle in d-dimensional Minkowski space can be treated as the system confined to the border of the AdSd+1 of infinite radius, while various nonrelativistic systems may be canonically related to a relativistic (massless, massive, or tachyon) particle on the AdS2 × Sd−1. The list of nonrelativistic systems “unified” by such a correspondence comprises the conformal mechanics model, the planar charge-vortex and three-dimensional charge-monopole systems, the particle in a planar gravitational field of a point massive source, and the conformal model associated with the charged particle propagating near the horizon of the extreme Reissner-Nordström black hole.  相似文献   

15.
We show how the discrete symmetries Z 2 and Z 3 combined with the superposition principle result in the SL(2,C) symmetry of quantum states. The role of Pauli’s exclusion principle in the derivation of the SL(2,C) symmetry is put forward as the source of the macroscopically observed Lorentz symmetry; then it is generalized for the case of the Z 3 grading replacing the usual Z 2 grading, leading to ternary commutation relations. We discuss the cubic and ternary generalizations of Grassmann algebra. Invariant cubic forms on such algebras are introduced, and it is shown how the SL(2,C) group arises naturally in the case of two generators only, as the symmetry group preserving these forms. The wave equation generalizing the Dirac operator to the Z 3-graded case is introduced, whose diagonalization leads to a sixthorder equation. The solutions of this equation cannot propagate because their exponents always contain non-oscillating real damping factor. We show how certain cubic products can propagate nevertheless. The model suggests the origin of the color SU(3) symmetry.  相似文献   

16.
We provide a framework for non-relativistic holography so that a covariant action principle ensuring the Galilean symmetry for dual conformal field theory is given. This framework is based on the Bargmann lift of the Newton–Cartan gravity to the one-dimensional higher Einstein gravity, or reversely, the null-like Kaluza–Klein reduction. We reproduce the previous zero temperature results, and our framework provides a natural explanation about why the holography is co-dimension 2. We then construct the black hole solution dual to the thermal CFT, and find the horizon is curvature singular. However, we are able to derive the sensible thermodynamics for the dual non-relativistic CFT with correct thermodynamical relations. Besides, our construction admits a null Killing vector in the bulk such that the Galilean symmetry is preserved under the holographic RG flow. Finally, we evaluate the viscosity and find it zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero.  相似文献   

17.
《Physics letters. [Part B]》1988,212(3):277-282
We report a new family of supermembrane vacua possesing the Siegel symmetry. This family consists of bosonic solutions of supermembrane field equations and describes static, toroidal membranes in d=11 black hole spacetimes. The black holes we consider are obtained by embedding the d=4 Reissner-Nordström solutions into d=11, N=1 supergravity. We show that supermembranes pick, as their backgrounds, only the extreme Reissner-Nordström black holes and require the d=4 magnetic charge to be non-zero. Moreover, the membranes on dyonic holes can be interpreted, at the linearized level, as fluctuations of the membranes on magnetically charged holes. The quantisation around the toroidal membranes on the magnetically charged, extreme black holes therefore poses itself as an interesting problem.  相似文献   

18.
In this paper, we study the effects of thermal fluctuations on Dyadosphere of Reissner-Nordström, Janis-Newman-Winicour and the fragmentation of f(R) global monopole black holes. In the presence of these fluctuations, we obtain various thermodynamic quantities like pressure, entropy, specific heat, Canonical and Grand Canonical ensembles. We discuss the stability of these black holes using the γ (the ratio of heat capacities). We also discuss the phase transition and range of local and global stability. It is demonstrated that in Dyadoshpere of Reissner-Nordström, Janis-Newman-Winicour and fragmentation of f(R) global monopole black holes become locally and globally stable due to logarithmic correction term and large horizon radius.  相似文献   

19.
《Nuclear Physics B》1995,456(3):732-752
Following the work of Sen, we consider the correspondence between extremal black holes and string states in the context of the entropy. We obtain and study properties of electrically charged black hole backgrounds of tree level heterotic string theory compactified on a p-dimensional torus, for D = (10 − p) = 4,…,9. We study in particular a one-parameter extremal class of these black holes, the members of which are shown to be supersymmetric. We find that the entropy of such an extremal black hole, when calculated at the stringy stretched horizon, scales in such a way that it can be identified with the entropy of the elementary string state with the corresponding quantum numbers.  相似文献   

20.
Single centered supersymmetric black holes in four dimensions have spherically symmetric horizon and hence carry zero angular momentum. This leads to a specific sign of the helicity trace index associated with these black holes. Since the latter are given by the Fourier expansion coefficients of appropriate meromorphic modular forms of Sp(2,\mathbbZ){Sp(2,{\mathbb{Z}})} or its subgroup, we are led to a specific prediction for the signs of a subset of these Fourier coefficients which represent contributions from single centered black holes only. We explicitly test these predictions for the modular forms which compute the index of quarter BPS black holes in heterotic string theory on T 6, as well as in \mathbbZN{{\mathbb{Z}}_N} CHL models for N = 2, 3, 5, 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号