首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present evidence for the presence of a phase transition inSU(3) lattice gauge theory at finite temperature using Monte-Carlo methods. An extrapolation to the continuum limit leads to the valueT c mom±15% for the critical temperature separating the two phases.  相似文献   

3.
In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U ≠ 0 the local SU(2) × SU(2) × U(1) gauge symmetry of the Hubbard model on a bipartite lattice with NaD sites and vanishing transfer integral t = 0 can be lifted to a global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = Naa for which D = 1, 2, 3,... in the number NaD of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4NaD energy eigenstates refer to representations of the new found global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) × SO(3) × U(1) equals the Hilbert-space dimension 4NaD. It is confirmed elsewhere that the new found symmetry has important physical consequences.  相似文献   

4.
A novel photonic crystal fiber sensing theory filled with magnetic fluid is proposed based on the change of the MF refractive index under varied magnetic field. The magnetically induced tuning of the magnetic fluid filled PCF propagation properties were investigated by the full-vector finite element method with a perfectly matched layer. Theoretical calculations show that both the effective refractive index and the effective mode area increase vs. the increased magnetic field, and the PCF filled MF with larger d/Λ is more sensitive to magnetic field. When the wavelength λ = 1550 nm, the duty ratio d/Λ = 0.9, d/Λ = 0.6, the effective refractive indexes increase respectively from 1.598279 to 1.617572, from 1.61948 to 1.632484, and the effective mode areas increase respectively from 3.561115 μm2 to 7.052360 μm2, from 6.167494 μm2 to 37.221998 μm2 as the magnetic field changes from 25 Oe to 175 Oe. This scheme provides theoretical foundation to use magnetic field to control light in photonic crystal fiber and also offers a potential method for magnetic field sensing based on the TIR-PCF.  相似文献   

5.
The exclusive reaction pp→Λ°K+p has been studied at 0.1<?tpp<0.6 GeV2 and energies √s=45 GeV and 53 GeV at the CERN ISR. Diffractive excitation p→Λ°K+ occurs predominantly in the mass range M(Λ°K+)≈2.1 GeV and peaks at 1.7 GeV. The cross section for pp→Λ°K+p is 10±3μb for M(Λ°K+)<2.5 GeV, and the tpp dependence is exp (bt) with b=7.0±0.5 GeV?2.  相似文献   

6.
The present theory is based on the assumption that, at very small (Planck scale) distances our spacetime is discrete, and this discreteness influences the Planck scale physics. Considering our (3+1)-dimensional spacetime as a regular hypercubic lattice with a parameter a=λPl, where λPl is the Planck length, we have investigated a role of lattice artifact monopoles, which is essential near the Planck scale if the family-replicated gauge group model (FRGGM) is an extension of the Standard Model (SM) at high energies. It was shown that monopoles have N times smaller magnetic charge in the FRGGM than in the SM (N is the number of families in the FRGGM). These monopoles can give an additional contribution to β functions of the renormalization-group equations for the running fine structure constants αi(μ) (i=1, 2, 3 correspond to the U(1), SU(2), and SU(3) gauge groups of the SM). We have used the Dirac relation for renormalized electric and magnetic charges. Also, we have estimated the enlargement of a number of fermions in the FRGGM leading to the suppression of the asymptotic freedom in the non-Abelian theory. The different role of monopoles in the vicinity of the Planck scale gives rise either to anti-GUT or to the new possibility of unification of gauge interactions (including gravity) at the scale μGUT≈1018.4 GeV. We discussed the possibility of the [SU(5)]3 SUSY or [SO(10)]3 SUSY unifications.  相似文献   

7.
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2)K Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.  相似文献   

8.
A gauge theory with the gauge groupU(1)×U(1)×SU(2)×SU(3)×SU(4) is shown to fit well into the generalized Kaluza scheme with eleven-dimensional space-time and its compact subspaceS 2×S 5. A unified theory is obtained which exhibits some broken super-symmetric features (N = 8). Our approach is dictated by phenomenological requirements. The appearance of three generations of leptons and six flavors of colored quarks follows naturally. Within our Lagrangian there appear several free parameters (coupling constants), but some relations between them may follow from the requirement of cancellation of divergencies.Temporarily at Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd., Dublin 4, Ireland.  相似文献   

9.
A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama’s program. A novel field strength G = ∂F + fAF arises besides the one of the first order treatment, F = ∂A − ∂A + fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is LP ∝ G2. In this application the photon mass is estimated. The SU (N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov’s Lagrangian.  相似文献   

10.
A unification model of 4D gravity and SU(3)×SU(2)×U(1) Yang-Mills theory is presented. It is obtained from a Kaluza-Klein compactification of 8D quaternionic gravity on an internal CP 2=SU(3)/U(2) symmetric space. We proceed to explore the nonlinear connection formalism used in Finsler geometry to show how ordinary gravity in D=4+2 dimensions has enough degrees of freedom to encode a 4D gravitational and SU(5) Yang-Mills theory. This occurs when the internal two-dim space is a sphere S 2. This is an appealing result because SU(5) is one of the candidate GUT groups. We conclude by discussing how the nonlinear connection formalism of Finsler geometry provides an infinite hierarchical extension of the Standard Model within a six dimensional gravitational theory due to the embedding of SU(3)×SU(2)×U(1)⊂SU(5)⊂SU(∞).  相似文献   

11.
Instantons infinitesimally turned out of theSU c (3) subspace of spontaneously brokenSU(5) gauge theory induce a baryon number violating interaction proportional 1/μ X 2 like heavy vector boson exchange, but with a different tensor structure.  相似文献   

12.
Weak radiative decaysK L,S →π+π?γ andK +→π+π0γ are reexamined. The electromagnetic form factors and long-distance contributions to the direct photon emission are evaluated using the higher order effective chiral Lagrangian. We find that (1) the naive soft-pion theorem cannot be applied to the magnetic-type transition amplitude, (2) the shortdistance contribution toK L →π+π?γ is comparable to or even bigger than the long-distance one, (3) the ΔI=1/2 enhancement persists in the decayK +→π+π0γ, (4) to the order of 1/Λ χ 2 (Λ χ being the chiral-symmetry breaking scale) the direct photon emission amplitude does not receive a contribution from penguin operators, and (5) the 1/N c expansion improves the discrepancy between theory and experiment.  相似文献   

13.
The Lambda-renormalized Einstein–Schrödinger theory is a modification of the original Einstein–Schrödinger theory in which a cosmological constant term is added to the Lagrangian, and it has been shown to closely approximate Einstein– Maxwell theory. Here we generalize this theory to non-Abelian fields by letting the fields be composed of d × d Hermitian matrices. The resulting theory incorporates the U(1) and SU(d) gauge terms of Einstein–Maxwell–Yang–Mills theory, and is invariant under U(1) and SU(d) gauge transformations. The special case where symmetric fields are multiples of the identity matrix closely approximates Einstein–Maxwell–Yang–Mills theory in that the extra terms in the field equations are < 10?13 of the usual terms for worst-case fields accessible to measurement. The theory contains a symmetric metric and Hermitian vector potential, and is easily coupled to the additional fields of Weinberg–Salam theory or flipped SU(5) GUT theory. We also consider the case where symmetric fields have small traceless parts, and show how this suggests a possible dark matter candidate.  相似文献   

14.
The previously proposed left-right-symmetric SU(2)L × SU(2)R × U(1) theory permits one of the two neutral gauge particles N1 and N2 to be particularly light (<mW+L) compatible with all neutrin-data and the present atomic parity experiments. Distinguishing features of this theory (with the light mass solution) for e?e+ → μ+μ? and π+π? at PETRA and PEP energies as compared to the SU(2) × U(1) predictions are given.  相似文献   

15.
We propose an algorithmic procedure of obtaining multiple M2 brane dynamics starting with an action of a single M5 brane. The procedure involves a novel Kaluza-Klein reduction. First, the M5 brane action is truncated to keep a few leading terms in the derivative expansion. Then 3+3 splitting of dimensions is carried out. With expansion in terms of the S2 spherical harmonics, the fields are associated with SU(N) (or its infinite extension) gauge algebra. We present an elaborate reduction procedure that leads to ABJM theory when the fuzzy spherical harmonics are replaced by SU(N) gauge generators.  相似文献   

16.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

17.
We report new results on nearly conformal gauge theories with fermions in the fundamental representation of the SU(3)SU(3) color gauge group as the number of fermion flavors is varied in the Nf=4–16Nf=416 range. To unambiguously identify the chirally broken phase below the conformal window we apply a comprehensive lattice tool set in finite volumes which includes the test of Goldstone pion dynamics, the spectrum of the fermion Dirac operator, and eigenvalue distributions of random matrix theory. We also discuss the theory inside the conformal window and present our first results on the running of the renormalized gauge coupling and the renormalization group beta function. The importance of understanding finite volume zero momentum gauge field dynamics inside the conformal window is illustrated. Staggered lattice fermions are used throughout the calculations.  相似文献   

18.
Hidekatsu Nemura 《Few-Body Systems》2013,54(7-10):1223-1226
We present our recent study on ΛN and ΣN (isospin I = 3/2) interactions by measuring Nambu–Bethe–Salpeter wave functions on the Lattice QCD. The lattice QCD calculation is performed by using the N f  = 2 + 1 gauge configurations generated by PACS-CS collaboration together with employing an improved method to obtain potentials in lattice QCD simulations. For the 1 S 0 channel, the central ΣN (I = 3/2) potential and the central ΛN (1 S 0) potential are found to be very similar. For the spin triplet (3 S 1?3 D 1) channels, the central ΛN(3 S 1?3 D 1) potential is attractive while the central ΣN(I = 3/2, 3 S 1?3 D 1) potentials is repulsive. Tensor potentials, on the other hand, are rather weak in both ΛN and ΣN(I = 3/2) systems.  相似文献   

19.
A type of high birefringence dual-core photonic crystal fibers (DC-PCFs) with a central row of elliptical air holes have been proposed. The transverse electric field vector distributions of the two modes are evaluated, the birefringence or coupling length with the different parameters is numerically analyzed based on finite-element method. The numerical results show values for the birefringence of 8.247 × 10−3 (for wavelength, λ = 1.5 μm and lattice length, Λ = 1.3 μm), and for the coupling lengths about 3.1 mm and 2.6 mm (λ = 1.5 μm and Λ = 1.5 μm) to modes of x and y polarized, respectively. With the increasing of the air-filling fraction in proposed DC-PCF, the coupling length becomes longer and the birefringence becomes higher.  相似文献   

20.
We study the renormalization group equations of the gauge couplings in theSU(4)×O(4)~SU(4)×SU(2) L ×SU(2_ R string model, derived in the context of the free fermionic formulation of the four dimensional superstring. We calculate the effective string unification scale taking into account string threshold corrections and we consider the consequences of then L andn R fractionally charged states, sitting in the (1, 2, 1) and (1, 1, 2) representations correspondingly, of the gauge symmetry of the model. Some of these states become massive at a very high scale, when a number of singlet fields acquire vev's. However, many of them (the precise number depends on the specific choice of the flat direction) remain in the massless spectrum. We consider various cases and find that, for specific choices of flat directions, the physical parameters of the model, like the grand unification scale and the low energy parameters sin2θ W and α3, depend only on the differencen ?=nL-nR. We study more general cases where remnants of the exotic doublets remain below theSU(4) breaking scale. We also solve the coupled differential system of the renormalization group equations for the gauge and the Yukawa couplings and estimate the range of the top quark mass which is found to lie in the range 140 GeV<m t<190GeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号