共查询到20条相似文献,搜索用时 15 毫秒
1.
A practical multinuclear transceiver RF volume coil with improved efficiency for in vivo small animal 1H/13C/23Na MR applications at the ultrahigh magnetic field of 7 T is reported. In the proposed design, the coil's resonance frequencies for 1H and 13C are realized by using a traditional double-tuned approach, while the resonant frequency for 23Na, which is only some 4 MHz away from the 13C frequency, is tuned based upon 13C channel by easy-operating capacitive “frequency switches”. In contrast to the traditional triple-tuned volume coil, the volume coil with the proposed design possesses less number of resonances, which helps improve the coil efficiency and alleviate the design and operation difficulties. This coil design strategy is advantageous and well suitable for multinuclear MR imaging and spectroscopy studies, particularly in the case where Larmor frequencies of nuclei in question are not separate enough. The prototype multinuclear coil was demonstrated in the desired unshielded design for easy construction and experiment implementation at 7 T. The design method may provide a practical and robust solution to designing multinuclear RF volume coils for in vivo MR imaging and spectroscopy at ultrahigh fields. Finite difference time domain method simulations for evaluating the design and 7-T MR experiment results acquired using the prototype coil are presented. 相似文献
2.
Zhang X Ugurbil K Chen W 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2003,161(2):242-251
A high-frequency RF volume coil based on the use of microstrip transmission line (MTL) has been developed for in vivo 1H MR applications on the human head at 4T. This coil is characterized by major advantages: (i) completely distributed coil circuit, (ii) high-quality factor (Q), (iii) simple coil structure, and (iv) better sensitivity and less signal-intensity variation in the MR image of the human head compared with an RF shielded birdcage coil of similar coil size. The proposed MTL volume coil does not require additional RF shielding for preventing Q degradation from radiation losses due to the unique MTL structure; thus, it provides a maximal useable space inside the volume coil when compared with most volume coils available at high fields with the same overall coil size. The intrinsic B(1) distribution of the MTL volume coil effectively compensates for the dielectric resonance effect at 4T and improves the signal homogeneity in human head MR images in the transaxial planes. The results of this study demonstrate that the MTL volume coil design provides an efficient and simple solution to RF volume coil design for human MR studies at high fields. 相似文献
3.
Chen G Muftuler LT Ha SH Nalcioglu O 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,186(2):273-281
An optimization method in RF coil array design for SENSE imaging is described. Using this method the optimized RF coil geometries can be calculated numerically given the required SENSE imaging performance. Although this method can be applied to optimize the RF coil arrays for both 1D and 2D SENSE imaging, to demonstrate the potential applications of this method, we designed RF coil arrays for 2D SENSE imaging and compared their performance by simulation. An optimized 4-channel receive-only RF coil array designed for 2D SENSE imaging was implemented and tested to demonstrate the feasibility of the proposed technique. Imaging results showed reasonable agreement with the simulations, thus the method can be applied to RF coil array designs for SENSE imaging when optimum imaging performance is desired. 相似文献
4.
Arnon Neufeld Naftali Landsberg Amir Boag 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,200(1):49-55
A method for enhancing the signal to noise ratio (SNR) in NMR volume coils is described. By introducing inserts made of low-loss, high dielectric constant material into specific locations in the coil, the SNR can often be enhanced by up to 20%, while B1 homogeneity is hardly affected. A model for predicting the limit of the SNR improvement is also presented. The model accurately predicts the SNR gain obtained in both numerical simulations and experiment. An experiment was conducted on a mini-MRI system. Experimental results are in very good agreement with the simulations in regard to both SNR improvement and B1 enhancement in transmission. Inserts made of ultra high dielectric constant materials can be as thin as few millimeters, thus, conveniently fitting into existing coil-sample gaps in volume coils. 相似文献
5.
Mikhail Kozlov Robert Turner 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,200(1):147-152
To accelerate the analysis of a multi-element MRI coil, a two-way link is used between radiofrequency (RF) circuit and 3-D electromagnetic (EM) simulation tools. In this configuration, only one 3-D EM simulation is required to investigate the coil performance over a range of different tunings, saving considerable computation time. For the purpose of 3-D EM simulation, the coil feed networks and trim capacitors are substituted by 50 Ω ports. The entire coil was tuned in the RF circuit domain, and the near-field profiles of the electric and magnetic field components were then calculated, together with the specific energy absorption ratio (SAR) maps in the 3-D EM domain 相似文献
6.
Barbara Blasiak Vyacheslav Volotovskyy Charlie Deng Boguslaw Tomanek 《Magnetic resonance imaging》2009,27(9):1302-1308
Applications of low-field magnetic resonance imaging (MRI) systems (<0.3 T) are limited due to the signal-to-noise ratio (SNR) being lower than that provided by systems based on superconductive magnets (≥1.5 T). Therefore, the design of radiofrequency (RF) coils for low-field MRI requires careful consideration as significant gains in SNR can be achieved with the proper design of the RF coil. This article describes an analytical method for the optimization of solenoidal coils. Coil and sample losses are analyzed to provide maximum SNR and optimum B1 field homogeneity. The calculations are performed for solenoidal coils optimized for the human head at 0.2 T, but the method could also be applied to any solenoidal coil for imaging other anatomical regions at low field. Several coils were constructed to compare experimental and theoretical results. A head magnetic resonance image obtained at 0.2 T with the optimum design is presented. 相似文献
7.
Avdievich NI Bradshaw K Lee JH Kuznetsov AM Hetherington HP 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,187(2):234-241
Split RF coils offer improved patient access by eliminating the need for the coil to be slid over the region of interest. For unshielded birdcage coils, the presence of end ring currents necessitates a direct electrical connection between two halves of the coil. For high-field (>3T) shielded birdcage coils, both the shield and the coil must be split and reliably connected electrically. This problem can be circumvented by the use of split TEM volume coils. Since the elements of a TEM coil are coupled inductively, no direct electrical connection between the halves is necessary. In this work we demonstrate that the effects of splitting the shield for head and knee TEMs can be compensated for, and performance retained. For the knee, the improved access allowed the coil diameter to be reduced, enhancing the sensitivity by 15-20%. 相似文献
8.
9.
介绍了一种用于开放式MRI系统的射频发射线圈. 此发射线圈为上下2个相同的线圈,分别安装在磁体的2极,两线圈采用非对称的正交方式放置. 线圈为矩形螺线管结构,通过电磁场数值计算的方法对线圈的匝间距进行了优化,使线圈在300 mm的球形区域内达到偏差不超过3 dB的均匀性要求. 根据优化结果制作了一套用于0.23 T开放式MRI系统的发射线圈,并对线圈的均匀性及射频发射的效率进行了测试. 测试结果表明,线圈具有较高的发射效率和较好的均匀性,由此验证了设计方案的可行性. 相似文献
10.
11.
The advantages of open, vertical-field, magnetic resonance-guided, focused ultrasound surgery (MRgFUS) are attractive. The inverse technique using the bi-boundary conditions is proposed to design a uterine-oriented intraoperative RF coil with an ultrasound aperture for the MRgFUS system. In the current proposed scheme, the desired magnetic field of the RF coil was set to completely overlap the target organ. The current density distribution on the RF coil surface, accounting for the expected magnetic field, was solved using the inverse technique. The stream function was available through the ‘discretization’ of the current density distribution on the RF coil surface. The coil windings were obtained from the contour plot of the stream function. As a modification of previous designs, the bi-boundary conditions are proposed in the inverse technique for the existence of the ultrasound aperture. Based on the obtained coil windings, a prototype coil was constructed. MR imaging of the phantom and the human body was performed to show the efficacy of the prototype coil. The results of temperature measurement using the prototype coil in a 0.4-T MR system were satisfactory. The performance of the prototype coil improved compared with the previously reported design. 相似文献
12.
Alecci M Romanzetti S Kaffanke J Celik A Wegener HP Shah NJ 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2006,181(2):203-211
MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned (23)Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the (23)Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent (1)H and (23)Na rat brain images showing good SNR ((23)Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ((23)Na: 1.25 x 1.25 x 5mm(3)) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature. 相似文献
13.
Wang ZJ 《Magnetic resonance imaging》2008,26(9):1310-1315
A complete RF coil system, as has been previously defined, is capable of generating any steady-state RF field, at the MR frequency, that is compatible with Maxwell's equations. A coil system is complete if it is capable of generating all basis vector fields in the multipole expansion of the electromagnetic fields. A complete coil system has the potential to reach the ultimate intrinsic signal-to-noise as an MRI receiver coil. It also offers maximum flexibility in tailoring the spatial RF field distribution as an excitation coil. Here, computer simulations have been performed on array coils employing composite coil elements, assuming the current loops are small and can be approximated by magnetic dipoles. We demonstrate that a coil array can be configured to approximate a truncated complete array coil and to generate the basis magnetic vector fields up to certain orders in the multipole expansion of the electromagnetic fields. 相似文献
14.
In this article,a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system.Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil.The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation.The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM).Good magnetic resonance (MR) images are achieved on a shepherd dog. 相似文献
15.
Chang-Ki Kang Myung-Kyun Woo Suk-Min Hong Young-Bo Kim Zang-Hee Cho 《Magnetic resonance imaging》2014
Purpose
To investigate intracranial microvascular images with transceiver radio-frequency (RF) coils at ultra-high field 7 T magnetic resonance imaging (MRI).Materials and methods
We designed several types of RF coils for the study of 7 T magnetic resonance angiography and analyzed quantitatively each coil's performance in terms of the signal-to-noise ratio (SNR) profiles to evaluate the usefulness of RF coils for microvascular imaging applications. We also obtained the microvascular images with different resolutions and parallel imaging technique.Results
The overlapped 6-channel (ch) transceiver coil exhibited the highest performance for angiographic imaging. Although other multi-channel coils, such as 4- or 8-ch, were also suitable for fast imaging, these coils performed poorly in homogeneity or SNR for angiographic imaging. Furthermore, the 8-ch coil was poor in SNR at the center of the brain, while it had the highest SNR at the periphery.Conclusion
The present study has demonstrated that the overlapped 6-ch coil with large-size loop coils provided the best performance for microvascular imaging or angiography with the ultra-high-field 7 T MRI, mainly because of its long penetration depth together with high SNR. 相似文献16.
Curto CA Placidi G Sotgiu A Alecci M 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2004,171(2):353-358
We present an open volume, high isolation, RF system suitable for pulsed NMR and EPR spectrometers with reduced dead time. It comprises a set of three RF surface coils disposed with mutually parallel RF fields and a double-channel receiver (RX). Theoretical and experimental results obtained with a prototype operating at about 100 MHz are reported. Each surface RF coil (diameter 5.5 cm) was tuned to f0 = 100.00 ± 0.01 MHz when isolated. Because of the mutual coupling and the geometry of the RF coils, only two resonances at f1 = 97.94 MHz and f2 = 101.85 MHz were observed. We show they are associated with two different RF field spatial distributions. In continuous mode (CW) operation the isolation between the TX coil and one of the RX coils (single-channel) was about −10 dB. By setting the double-channel RF assembly in subtraction mode the isolation values at f1 or f2 could be optimised to about −75 dB. Following a TX RF pulse (5 μs duration) an exponential decay with time constant of about 600 ns was observed. The isolation with single-channel RX coil was about −11 dB and it increased to about −47 dB with the double-channel RX in subtraction mode. Similar results were obtained with the RF pulse frequency selected to f2 and also with shorter (500 ns) RF pulses. The above geometrical parameters and operating frequency of the RF assembly were selected as a model for potential applications in solid state NMR and in free radical EPR spectroscopy and imaging. 相似文献
17.
18.
The signal-to-noise ratio (SNR) performance and practicality issues of a four-element phased-array coil and an implantable coil system were compared for rat spinal cord magnetic resonance imaging (MRI) at 7 T. MRI scans of the rat spinal cord at T10 were acquired from eight rats over a 3 week period using both coil systems, with and without laminectomy. The results demonstrate that both the phased array and the implantable coil systems are feasible options for rat spinal cord imaging at 7 T, with both systems providing adequate SNR for 100-mum spatial resolution at reasonable imaging times. The implantable coils provided significantly higher SNR, as compared to the phased array (average SNR gain of 5.3x between the laminectomy groups and 2.5x between the nonlaminectomy groups). The implantable coil system should be used if maximal SNR is critical, whereas the phased array is a good choice for its ease of use and lesser invasiveness. 相似文献
19.
20.
M.J. Versluis N. Tsekos N.B. Smith A.G. Webb 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,200(1):161-166
Morphological and functional cardiac MRI can potentially benefit greatly from the recent advent of commercial high-field (7 tesla and above) MRI systems. However, conventional hardware configurations at lower field using a body-coil for homogeneous transmission are not available at these field strengths. Sophisticated multiple-transmit-channel systems have been shown to be able to image the human heart at 7 tesla but such systems are currently not widely available. In this paper, we empirically optimize the design of a simple quadrature coil for cardiac imaging at 7 tesla. The size, geometry, and position have been chosen to produce a B1 field with no tissue-induced signal voids within the heart. Standard navigator echoes for gating were adapted for operation at the heart/lung interface, directly along the head–foot direction. Using this setup, conventional and high-resolution cine functional imaging have been successfully performed, as has morphological imaging of the right coronary artery. 相似文献