首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Susceptibility-weighted imaging (SWI) is a valuable technique for high-resolution imaging of brain vasculature that greatly benefits from the emergence of higher field strength MR scanners. Autocalibrating partially parallel imaging techniques can be employed to reduce lengthy acquisition times as long as the decrease in signal-to-noise ratio does not significantly affect the contrast between vessels and brain parenchyma. This study assessed the feasibility of a Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA)-based SWI technique at 7 T in both healthy volunteers and brain tumor patients. GRAPPA-based SWI allowed a twofold or more reduction in scan time without compromising vessel contrast and small vessel detection. Postprocessing parameters for the SWI needed to be modified for patients where the tumor causes high-frequency phase wrap artifacts but did not adversely affect vessel contrast. GRAPPA-based SWI at 7 T revealed regions of microvascularity, hemorrhage and calcification within heterogeneous brain tumors that may aid in characterizing active or necrotic tumor and monitoring treatment effects.  相似文献   

2.

Object

Although three-dimensional (3D), high-spatial resolution susceptibility-weighted imaging (SWI) appears to be valuable in the evaluation of central nervous system gliomas, several evaluation methods are proposed in the literature. The purpose of this study was to evaluate the use of 3D SWI for grading intracranial gliomas with various analysis methods.

Materials and Methods

Twenty-three patients suspected of having gliomas participated in this study. SWI was performed in addition to conventional MR sequences. In 15 cases, post-gadolinium enhanced SWI was also obtained. Imaging evaluation criteria were conventional grade, hypointensity ratio in the tumor-dominant structure of hypointensity on SWI (hemorrhage or vascular structure) and presence of abnormal enhancement surrounding the tumor.

Results

Mean grading scores of conventional grade showed no statistically significant difference among WHO grades. Mean grading scores of hypointensity ratios in the tumor were higher for WHO Grades 3 and 4 than for lower grade tumors (P=.05, Mann–Whitney U test). Hemorrhagic foci were more frequently seen in the higher grade tumor. Post-contrast susceptibility-weighted images of five of 11 WHO Grade 3 and 4 cases showed bright enhancement surrounding the tumor, suggesting a breakdown of the blood–brain barrier.

Conclusions

SWI at 3 T may be a useful method to analyze the structural characteristics of gliomas and to evaluate pathology in vivo. Assessment of hypointensity ratios in the glioma was the most preferable method in grading glioma. However, more studies, specifically concerning a suitable method for image analysis, are needed to establish SWI at 3 T as a useful tool in clinical routine.  相似文献   

3.
Traumatic brain injury (TBI) is a prevalent disease, and many TBI patients experience disturbed cerebral blood flow (CBF) after injury. Moreover, TBI is difficult to quantify with conventional imaging modalities. In this paper, we utilized susceptibility weighted imaging (SWI) as a means to monitor functional blood oxygenation changes and to quantify CBF changes in animals after trauma. In this study using six rats, brain trauma was induced by a weight drop model and the brain was scanned over four time points: pre trauma, and 4 h, 24 h and 48 h post trauma. Five rats survived and one died after trauma. A blood phase analysis using filtered SWI phase images suggested that three rats recovered after 48 h and two rats deteriorated. SWI also suggested that CBF decreased by up to 26%. The CBF change is in agreement with the results of arterial spin labeling methods conducted in this study and with previously published results. Furthermore, SWI revealed an enlargement of the major venous vasculature in deep brain structures, in accordance with the location of diffuse axonal injury. Compared with the traditional, invasive, clinical monitoring of cerebral vascular damage and reduction in blood flow, this method offers a novel, safe and noninvasive approach to quantify changes in oxygen saturation and CBF and to visualize structural changes in blood vasculature after TBI.  相似文献   

4.
BACKGROUND: Ultrahigh-field MRI at 8 T offers unprecedented resolution for imaging brain structures and microvasculature. OBJECTIVE: The aim of this study is to apply high-resolution MRI for stroke imaging and to characterize findings at 1.5 and 8 T. METHODS: Seventeen subjects with minor ischemic infarcts were studied using T2-weighted gradient echo (GE) and rapid acquisition with relaxation enhancement (RARE) images at 8 T with resolution up to 200 microm. In 10 subjects, T1- and T2-weighted fast spin echo (FSE) and fluid-attenuated inversion recovery (FLAIR) images were also acquired at 1.5-T MRI. RESULTS: The 8-T images showed infarcts as sharply demarcated areas of high-signal intensity (n=21) and revealed more infarctions than 1.5-T images (n=14) (P<.003). The low-signal intensity areas that surrounded infarctions were suggestive of hemosiderin deposits. The 8-T characteristics of microvessels terminating within the infractions were distinct from normal vasculature. The 8-T images revealed an angioma at the site of a second stroke, not apparent on 1.5-T images. CONCLUSIONS: Ultrahigh-field MRI at 8 T is feasible for stroke imaging. The 8-T MRI visualized infarcts and microvasculature with high resolution, revealing infarcts and vascular pathologies that were not apparent at 1.5 T.  相似文献   

5.
The aim of the study was to determine the effect of early tumor growth on T2 relaxation times in an experimental glioma model. A 9.4-T magnetic resonance imaging (MRI) system was used for the investigations. An animal model (n=12) of glioma was established using an intracranial inoculation of U87MGdEGFRvIII cells. The imaging studies were performed from Day 10 through Day 13 following tumor inoculation. Tumor blood vessel density was determined using quantitative immunochemistry. Tumor volume was measured daily using MR images. T2 values of the tumor were measured in five areas across the tumor and calculated using a single exponential fitting of the echo train. The measurements on Days 10 and 13 after tumor inoculation showed a 20% increase in T2. The changes in T2 correlated with the size of the tumor. Statistically significant differences in T2 values were observed between the edge of the tumor and the brain tissue on Days 11, 12 and 13 (P=.014, .008, .001, respectively), but not on Day 10 (P=.364). The results show that T2-weighted MRI may not detect glioma during an early phase of growth. T2 increases in growing glioma and varies heterogenously across the tumor.  相似文献   

6.
《Magnetic resonance imaging》1999,17(7):1001-1010
We investigated whether the simultaneous use of paramagnetic contrast medium and 3D on-resonance spin lock (SL) imaging could improve the contrast of enhancing brain tumors at 0.1 T. A phantom containing serial concentrations of gadopentetate dimeglumine (Gd-DTPA) in cross-linked bovine serum albumin (BSA) was imaged. Eleven patients with histologically verified glioma were also studied. T1-weighted 3D gradient echo images with and without SL pulse were acquired before and after a Gd-DTPA injection. SL effect, contrast, and contrast-to-noise ratio (CNR) were calculated for each patient. In the glioma patients, the SL effect was significantly smaller in the tumor than in the white and gray matter both before (p = 0.001, p = 0.025, respectively), and after contrast medium injection (p < 0.001, p < 0.001, respectively). On post-contrast images, SL imaging significantly improved tumor contrast (p = 0.001) whereas tumor CNR decreased slightly (p = 0.024). The combined use of SL imaging and paramagnetic Gd-DTPA contrast agent offers a modality for improving tumor contrast in magnetic resonance imaging (MRI) of enhancing brain tumors. 3D gradient echo SL imaging has also shown potential to increase tissue characterization properties of MR imaging of human gliomas.  相似文献   

7.
The nonhuman primate brain study provides important supplemental means for human brain exploration since the two species share close anatomical and functional similarities. MR diffusion tensor imaging (DTI) in human brain has revealed exquisite details of brain structures especially in the brain white matter. However, most previous monkey brain DTI results lack the spatial resolution in comparison to the conventional tracing and postmortem imaging methods, especially when it is acquired in commonly available human MRI scanners of field strength of 3 T or lower. To meet the increasing demands for nonhuman primate DTI studies, we proposed an in vivo high-resolution monkey DTI acquisition protocol that is practically feasible and combined it with an improved postprocessing procedure for a 3-T human scanner. The acquisition protocol, susceptibility distortion correction method with phase reversal acquisition, and postprocessing steps were proved to be effective in our study of rhesus monkeys. Results from diffusion tensor estimations and fiber tractography at 1 x 1 x 1 mm(3) resolution were found to be comparable to previous ex vivo DTI studies with much longer acquisition times. Effects of image resolution were evaluated and it was confirmed that the partial volume effect due to the larger voxel size in low-resolution data biased the diffusion tensor estimation and produced erroneous fiber tractography. Our results suggest that in vivo high-resolution monkey brain DTI can be achieved within practical time, which allows accurate diffusion tensor estimation and fiber tractography in monkey brains, so that the complex anatomical structures within many small but important anatomic structures can be delineated.  相似文献   

8.
Development and initial evaluation of 7-T q-ball imaging of the human brain   总被引:1,自引:0,他引:1  
Diffusion tensor imaging (DTI) noninvasively depicts white matter connectivity in regions where the Gaussian model of diffusion is valid but yields inaccurate results in those where diffusion has a more complex distribution, such as fiber crossings. q-ball imaging (QBI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion with larger numbers of diffusion-encoding directional measurements at higher diffusion-weighting factors (b values). However, the former technique results in longer acquisition times and the latter technique results in a lower signal-to-noise ratio (SNR). In this project, we developed specialized 7-T acquisition methods utilizing novel radiofrequency pulses, eight-channel parallel imaging EPI and high-order shimming with a phase-sensitive multichannel B0 field map reconstruction. These methods were applied in initial healthy adult volunteer studies, which demonstrated the feasibility of performing 7-T QBI. Preliminary comparisons of 3 T with 7 T within supratentorial crossing white matter tracts documented a 79.5% SNR increase for b=3000 s/mm2 (P=.0001) and a 38.6% SNR increase for b=6000 s/mm2 (P=.015). With spherical harmonic reconstruction of the q-ball orientation distribution function at b=3000 s/mm2, 7-T QBI allowed for accurate visualization of crossing fiber tracts with fewer diffusion-encoding acquisitions as compared with 3-T QBI. The improvement of 7-T QBI at b factors as high as 6000 s/mm2 resulted in better angular resolution as compared with 3-T QBI for depicting fibers crossing at shallow angles. Although the increased susceptibility effects at 7 T caused problematic distortions near brain-air interfaces at the skull base and posterior fossa, these initial 7-T QBI studies demonstrated excellent quality in much of the supratentorial brain, with significant improvements as compared with 3-T acquisitions in the same individuals.  相似文献   

9.
Dynamic contrast-enhanced magnetic resonance imaging (MRI) is widely used for measuring perfusion and blood volume, especially cerebral blood volume (CBV). In case of blood-brain barrier (BBB) disruption, the conventional techniques only partially determine the pharmacokinetic parameters of contrast medium (CM) exchange between different compartments. Here a modified pharmacokinetic model is applied, which is based on the bidirectional CM exchange between blood and two interstitial compartments in terms of the fractional volumes of the compartments and the vessel permeabilities between them. The evaluation technique using this model allows one to quantify the fractional volumes of the different compartments (blood, cells, slowly and fast enhancing interstitium) as well as the vessel permeabilities and cerebral blood flow (CBF) with a single T1-weighted dynamic MRI measurement. The method has been successfully applied in 25 glioma patients for generating maps of all of these parameters. The fractional volume maps allow for the differentiation of glioma vascularization types. The maps show a good correlation with the histological grading of these tumors. Furthermore, regions with enhanced interstitial volumes are found in high-grade gliomas. Differences in permeability maps of Gd-DTPA apart from BBB disruption do not exist between different tissue types. CBF measured in high-grade glioma is less pronounced than it would be expected from their blood volume. Therefore pharmacokinetic imaging provides an additional tool for glioma characterization.  相似文献   

10.
We describe a lesion with the magnetic resonance imaging (MRI) characteristics of a glioblastoma mutiforme and demonstrate how perfusion MRI and proton MR spectroscopic imaging can be used to differentiate necrotizing cerebritis from what appeared to be a high-grade glioma. A 43-year-old woman presented to her physician complaining of progressive visual disturbance and headache for several weeks. Conventional MRI demonstrated a parietal peripherally enhancing mass with central necrosis and moderate to severe surrounding T2 hyperintensity, suggesting an infiltrating high-grade glioma. However, advanced imaging, including dynamic susceptibility contrast MRI (DSC MRI) and magnetic resonance spectroscopic imaging (MRSI), suggested a nonneoplastic lesion. The DSC MRI data demonstrated no hyperperfusion within the lesion and surrounding T2 signal abnormality, and the MRSI data showed overall decrease in metabolites in this region, except for lactate. Because of the aggressive appearance to the lesion and the patients' worsening symptoms, a biopsy was performed. The pathologic diagnosis was necrotizing cerebritis. After the commencement of steroid therapy, imaging findings and patient symptoms improved. This report will review the utility of advanced imaging for differentiating inflammatory from neoplastic appearing lesions on conventional imaging.  相似文献   

11.
We evaluate novel magnetic resonance imaging (MRI) and positron emission tomography (PET) quantitative imaging biomarkers and associated multimodality, serial-time-point analysis methodologies, with the ultimate aim of providing clinically feasible, predictive measures for early assessment of response to cancer therapy. A focus of this work is method development and an investigation of the relationship between the information content of the two modalities. Imaging studies were conducted on subjects who were enrolled in glioblastoma multiforme (GBM) therapeutic clinical trials. Data were acquired, analyzed and displayed using methods that could be adapted for clinical use. Subjects underwent dynamic [18F]fluorothymidine (F-18 FLT) PET, sodium (23Na) MRI and 3-T structural MRI scans at baseline (before initiation of therapy), at an early time point after beginning therapy and at a late follow-up time point after therapy. Sodium MRI and F-18 FLT PET images were registered to the structural MRI. F-18 FLT PET tracer distribution volumes and sodium MRI concentrations were calculated on a voxel-wise basis to address the heterogeneity of tumor physiology. Changes in, and differences between, these quantities as a function of scan timing were tracked.  相似文献   

12.
Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.  相似文献   

13.
Intraoperative magnetic resonance imaging (iMRI) has gained importance in the treatment of gliomas and sellar tumors. In intracranial meningiomas, the extent of surgical tumor removal is one of the most important factors in the prevention of tumor recurrence and patient survival. Complex meningiomas located at the skull base or near eloquent brain regions show higher recurrence rates, morbidity and mortality. The aim of this study was to evaluate whether iMRI contributes to more extensive surgical resection in these tumors. Patients undergoing complex meningioma resection using iMRI from January 2007 to January 2011 were included in this study. The indication for iMRI-guided tumor resection included patients presenting with meningiomas located in the skull base or compressing eloquent brain areas in whom a radical resection was considered to be difficult. Intraoperative 0.15-T MRI scan (PoleStar; Medtronic Navigation, Louisville, CO, USA) was performed before and after maximal possible resection using standard microsurgical and neuronavigation techniques. All patients underwent fluorescence-guided resection. The following data were analyzed: tumor localization, histological grade, Simpson resection grade, duration of the procedure, iMRI scan time, iMRI findings, resection extent based on postresection iMRI, hospitalization time, surgical complications and outcome, and MRI follow-up 2–27 months postoperation. Twenty-seven consecutive patients undergoing complex meningioma resection using iMRI were included. In this series, only one patient (3.4%) underwent resection of tumor remnant after iMRI, although without improvement of the Simpson resection grade. Temporary neurologic deficits were found in 8 patients (27.6%) postoperatively, whereas 11 patients (37.9%) had permanent postoperative neurologic deficits. In one case (3.4%), fatal postoperative bleeding occurred which was not detected by iMRI. Our results show that iMRI has no influence on intraoperative strategy in terms of resection grade or detection of early postoperative complications. The benefits of iMRI in complex meningioma surgery are therefore doubtful; however, it may still prove to be effective in certain subsets of complex meningiomas.  相似文献   

14.
Multiparametric MRI is a remarkable imaging method for the assessment of patho-physiological processes. In particular, brain tumor characterization has taken advantage of the development of advanced techniques such as Diffusion- (DWI) and Perfusion- (PWI) Weighted Imaging, but a thorough analysis of meningiomas is still lacking despite the variety of computational methods proposed.We compute perfusion and diffusion parametric maps relying on a well-defined methodological workflow, investigating possible correlations between pure and diffusion-based perfusion parameters in a cohort of 26 patients before proton therapy. A preliminary investigation of meningioma staging biomarkers based on IntraVoxel Incoherent Motion and Dynamic Susceptibility Contrast is also reported. We observed significant differences between the gross target volume and the normal appearing white matter for every investigated parameter, confirming the higher vascularization of the neoplastic tissue. DWI and PWI parameters appeared to be weakly correlated and we found that diffusion parameters – the perfusion fraction in particular – could be promising biomarkers for tumor staging.  相似文献   

15.
Xie Z  Roberts W  Carson P  Liu X  Tao C  Wang X 《Optics letters》2011,36(24):4815-4817
We explored the potential of an emerging laser-based technology, photoacoustic imaging (PAI), for bladder cancer diagnosis through high-resolution imaging of microvasculature in the bladder tissues. Imaging results from ex vivo canine bladders demonstrated the excellent ability of PAI in mapping three-dimensional microvasculature in optically scattering bladder tissues. By comparing the results from human bladder specimens affected by cancer to those from the normal control, the feasibility of PAI to differentiate malignant from benign bladder tissues was also explored. The distinctive morphometric characteristics of tumor microvasculature can be seen in the images from cancer samples, suggesting that PAI may allow in vivo assessment of neoangiogenesis that is closely associated with bladder cancer generation and progression. By presenting subsurface morphological and physiological information in bladder tissues, PAI, when performed in a similar way as in conventional endoscopy, provides an opportunity for improved diagnosis, staging, and treatment guidance of bladder cancer.  相似文献   

16.
Serial MR imaging of intracranial metastases after radiosurgery   总被引:1,自引:0,他引:1  
Purpose: To evaluate the spatiotemporal evolution of radiosurgical induced changes both in metastases and in normal brain tissue adjacent to the lesions by serial magnetic resonance (MR) imaging. Methods and Materials: Thirty-five intracranial metastases of different primaries were treated in 25 patients by single high-dose radiosurgery. MR images acquired before radiosurgery were available in all patients. Sixty-three follow-up MR studies were performed in these patients including T2- and contrast-enhanced T1-weighted MR images. The average follow-up time was 9 ± 5 months (mean ± standard deviation [SD]). Based on contrast-enhanced T1-weighted MR images, tumor response was radiologically classified in the following four groups: stable disease was assumed if the average tumor diameter after treatment did not show a tumor shrinkage of more than 50% and an increase of more than 25%, partial remission as a shrinkage of tumor size of more than 50%, a disappearance of contrast-enhancing tumor as a complete remission, and an increase of tumor diameter of more than 25% as tumor progress. Moreover, we analysed signal changes on T2-weighted images in brain parenchyma adjacent to the enhancing metastases. Results: The overall mean survival time was 10.5 ± 7 months, with a 1-year actuarial survival rate of 40%. Stable disease, partial or complete remission of the metastatic tumor was observed in 22 patients (88%). Central or homogeneous loss of contrast enhancement appeared to be a good prognostic sign for stable disease or partial remission. This association was statistically significant (p < 0.05). Three patients (12%) suffered from tumor progression. In eight patients (32%) with stable disease or partial remission, signal changes on T2-weighted images were observed in tissue adjacent to the contrast enhancing lesions. A progression of the high signal on T2-weighted images was seen in seven of the eight patients between 3 and 6 months after therapy, followed by a signal regression 6–18 months after irradiation. Conclusion: MR imaging is a sensitive imaging tool to evaluate tumor response as well as the presence or absence of adjacent parenchymal changes following radiosurgery. Loss of homogeneous or central contrast enhancement on Gd-enhanced MR images appeared to be a good prognostic sign for tumor response. Tumor shrinkage seems not to be dependent on time. In addition, most cases of radiation induced changes in normal brain parenchyma observed on T2-weighted images seem to be self limited.  相似文献   

17.

Introduction

Treatment induced necrosis is a relatively frequent finding in patients treated for high-grade glioma. Differentiation by imaging modalities between glioma recurrence and treatment induced necrosis is not always straightforward. This is a comparative study of diffusion tensor imaging (DTI), dynamic susceptibility contrast MRI and 99mTc-Tetrofosmin brain single-photon emission computed tomography (SPECT) for differentiation of recurrent glioma from treatment induced necrosis.

Methods

A prospective study was made of 30 patients treated for high-grade glioma who had suspected recurrent tumor on follow-up MRI. All had been treated by surgical resection of the tumor followed by standard postoperative radiotherapy with chemotherapy. No residual tumor had been found on brain imaging immediately after the initial treatment. All the patients were studied with dynamic susceptibility contrast brain MRI and, within a week, 99mTc-Tetrofosmin brain SPECT.

Results

Both 99mTc-Tetrofosmin brain SPECT and dynamic susceptibility contrast MRI could discriminate between tumor recurrence and treatment induced necrosis with 100% sensitivity and 100% specificity. An apparent diffusion coefficient (ADC) ratio cut-off value of 1.27 could differentiate recurrence from treatment induced necrosis with 65% sensitivity and 100% specificity and a fractional anisotropy (FA) ratio cut-off value of 0.47 could differentiate recurrence from treatment induced necrosis with 57% sensitivity and 100% specificity. A significant correlation was demonstrated between 99mTc-Tetrofosmin uptake ratio and rCBV (P = 0.003).

Conclusions

Dynamic susceptibility contrast MRI and brain SPECT with 99mTc-Tetrofosmin had the same accuracy and may be used to detect recurrent tumor following treatment for glioma. DTI also showed promise for the detection of recurrent tumor, but was inferior to both dynamic susceptibility contrast MRI and brain SPECT.  相似文献   

18.
Magnetic Resonance Spectroscopic Imaging (MRSI) is a technique for imaging spatial variation of metabolites and has been very useful in characterizing biochemical changes associated with disease as well as response to therapy in malignant pathologies. This work presents a self-calibrated undersampling to accelerate 3D elliptical MRSI and an extrapolation-reconstruction algorithm based on the GRAPPA method. The accelerated MRSI technique was tested in three volunteers and five brain tumor patients. Acceleration allowed larger spatial coverage and consequently, less lipid contamination in spectra, compared to fully sampled acquisition within the same scantime. Metabolite concentrations measured from the accelerated acquisitions were in good agreement with measurements obtained from fully sampled MRSI scans.  相似文献   

19.
The habenulae consist of a pair of small nuclei which bridge the limbic forebrain and midbrain monoaminergic centers. They are implicated in major depressive disorders due to abnormal phasic response when provoked by a conditioned stimulus. The lateral habenula (Lhb) is believed to be involved in dopamine metabolism and is now a target for deep brain stimulation, a treatment which has shown promising anti-depression effects. We imaged the habenulae with susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in order to localize the lateral habenula. Fifty-six healthy controls were recruited for this study. For the quantitative assessment, we traced the structure to compute volume from magnitude images and mean susceptibility bilaterally for the habenula on QSM. Thresholding methods were used to delineate the Lhb habenula on QSM. SWI, true SWI (tSWI), and QSM data were subjectively reviewed for increased Lhb contrast. SWI, QSM, and tSWI showed bilateral signal changes in the posterior location of the habenulae relative to the anterior location, which may indicate increased putative iron content within the Lhb. This signal behavior was shown in 41/44 (93%) subjects. In summary, it is possible to localize the lateral component of the habenula using SWI and QSM at 3 T.  相似文献   

20.
Traumatic brain injury (TBI) is a widespread cause of neurologic disability, with > 70% of cases being mild in severity. Magnetic resonance imaging provides objective biomarkers in the diagnosis of brain injury by detecting brain lesions resulting from trauma. This paper reports on the detection rates of presumed trauma-related pathology using fluid-attenuated inversion recovery (FLAIR) and susceptibility-weighted imaging (SWI) in TBI patients with chronic, persistent symptoms. Methods: 180 subjects with persistent neurobehavioral symptoms following head trauma referred by personal injury attorneys and 94 asymptomatic, age-matched volunteers were included in the study. 83% of TBI subjects were classified as mild. Results: TBI subjects had a significantly greater number of lesions detected by FLAIR than controls (42% vs. 22%) and more lesions detected by SWI than controls (28% vs. 3%). To reduce the confounding effects of aging, we examined mild TBI subjects < 45 years of age, which reduced the rate of lesions detected by FLAIR (26% vs. 2%) and SWI (15% vs. 0%). This younger group, which contained few age-related lesions, also demonstrated that subcortical lesions on FLAIR are more specific for TBI than deeper lesions. Conclusions: While the presence of litigation in mild TBI cases with incomplete recovery has been associated with greater expression of symptomatology and, by extension, poorer outcomes, this study shows that mild TBI patients in litigation with chronic, persistent symptoms may have associated brain injury underlying their symptoms detectable by MRI biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号