首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
该文讨论了Kolmogorov-Spieqel-Siveshinky方程的周期初值问题, 研究了半离散Fourier拟谱解的长时间行为, 证明了半离散系统的收敛性和整体吸引子的存在性. 构造了全离散的三层显式Fourier拟谱格式, 并证明了该格式的收敛性, 最后通过数值计算验证了格式的可信性. 数值结果表明: 该格式是长时间稳定并可取时间大步长. 作者模拟了方程的解在相空间的轨线, 得到了一些有意义的结论.  相似文献   

2.
Consider an inverse problem for the time-fractional diffusion equation in one dimensional spatial space. The aim is to determine the initial status and heat flux on the boundary simultaneously from heat measurement data given on the other boundary. Using the Laplace transform and the unique extension technique, the uniqueness for this inverse problem is proven. Then we construct a regularizing scheme for the reconstruction of boundary flux for known initial status. The convergence rate of the regularizing solution is established under some a priori information about the exact solution. Moreover, the initial distribution can also be recovered approximately from our regularizing scheme. Finally we present some numerical examples, which show the validity of the proposed reconstruction scheme.  相似文献   

3.
We focus on the study of multigrid methods with aggressive coarsening and polynomial smoothers for the solution of the linear systems corresponding to finite difference/element discretizations of the Laplace equation. Using local Fourier analysis we determine automatically the optimal values for the parameters involved in defining the polynomial smoothers and achieve fast convergence of cycles with aggressive coarsening. We also present numerical tests supporting the theoretical results and the heuristic ideas. The methods we introduce are highly parallelizable and efficient multigrid algorithms on structured and semi-structured grids in two and three spatial dimensions.  相似文献   

4.
分数阶Cahn-Hilliard方程的高效数值算法   总被引:2,自引:2,他引:0       下载免费PDF全文
给出了时空分数阶Cahn-Hilliard方程的一个高效数值算法.首先,利用Laplace变换将时空分数阶Cahn-Hilliard方程转化为空间分数阶Cahn-Hilliard方程;然后,结合Fourier谱方法和有限差分法得到一个时间二阶、空间谱精度的高效数值格式;最后,通过数值实验验证本文数值算法的有效性,并验证其满足能量耗散性质和质量守恒定律.  相似文献   

5.
In the present paper, the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data in an infinite “strip” domain is considered. This problem is severely ill-posed, i.e., the solution does not depend continuously on the data. A conditional stability result is given. A new a posteriori Fourier method for solving this problem is proposed. The corresponding error estimate between the exact solution and its regularization approximate solution is also proved. Numerical examples show the effectiveness of the method and the comparison of numerical effect between the a posteriori and the a priori Fourier method are also taken into account.  相似文献   

6.
We provide the numerical analysis of the combination of finite elements and Dirichlet-to-Neumann mappings (based on boundary integral operators) for a class of nonlinear exterior transmission problems whose weak formulations reduce to Lipschitz-continuous and strongly monotone operator equations. As a model we consider a nonlinear second order elliptic equation in divergence form in a bounded inner region of the plane, coupled with the Laplace equation in the corresponding unbounded exterior part. A discrete Galerkin scheme is presented by using linear finite elements on a triangulation of the domain, and then applying numerical quadrature and analytical formulae to evaluate all the linear, bilinear and semilinear forms involved. We prove the unique solvability of the discrete equations, and show the strong convergence of the approximate solutions. Furthermore, assuming additional regularity on the solution of the continuous operator equation, the asymptotic rate of convergence O(h) is also derived. Finally, numerical experiments are presented, which confirm the convergence results.  相似文献   

7.
Summary In this paper the convergence analysis of a direct boundary elecment method for the mixed boundary value problem for Laplace equation in a smooth plane domain is given. The method under consideration is based on the collocation solution by constant elements of the corresponding system of boundary integral equations. We prove the convergence of this method, provide asymptotic error estimates for the BEM-solution and give some numerical examples.  相似文献   

8.
We present a Waveform Relaxation (WR) version of the Neumann–Neumann algorithm for the wave equation in space‐time. The method is based on a nonoverlapping spatial domain decomposition, and the iteration involves subdomain solves in space‐time with corresponding interface conditions, followed by a correction step. Using a Fourier‐Laplace transform argument, for a particular relaxation parameter, we prove convergence of the algorithm in a finite number of steps for the finite time intervals. The number of steps depends on the size of the subdomains and the time window length on which the algorithm is employed. We illustrate the performance of the algorithm with numerical results, followed by a comparison with classical and optimized Schwarz WR methods. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 514–530, 2017  相似文献   

9.
In this paper, a Cauchy problem for the Laplace equation is investigated. Based on the fundamental solution to the elliptic equation, we propose to solve this problem by the truncation method, which generates well-posed problem. Then the well posedness of the proposed regularizing problem and convergence property of the regularizing solution to the exact one are proved. Error estimates for this method are provided together with a selection rule for the regularization parameter. The numerical results show that our proposed numerical methods work effectively. This work extends to earlier results in Qian et al. (2008) [14] and Hao et al. (2009) [5].  相似文献   

10.
The uniquely solvable system of the Cauchy integral equation of the first kind and index 1 and an additional integral condition is treated. Such a system arises, for example, when solving the skew derivative problem for the Laplace equation outside an open arc in a plane. This problem models the electric current from a thin electrode in a semiconductor film placed in a magnetic field. A fast and accurate numerical method based on the discrete Fourier transform is proposed. Some computational tests are given. It is shown that the convergence is close to exponential.  相似文献   

11.
广义非线性Sin-Gordon方程的整体解及数值计算   总被引:1,自引:0,他引:1  
梁宗旗 《应用数学》2003,16(4):40-49
本文考察了一类广义非线性Sin-Gordon方程的周期初值问题,利用非线性Galerkin方法,证明了其整体解的存在性和唯一性,并给出了其有界吸引集的存在性.构造了全离散的Fourier拟谱显格式,利用有界延拓法证明了其格式的收敛性与稳定性,并给出了误差估计、算法分析及计算复杂度,最后,通过数值例子,检验了理论结果的可信性.为对此模型的数值分析提供了理论基础和一个有效的算法.  相似文献   

12.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

13.
We consider a linear integral equation, which arises when solving the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a double layer potential, with a hypersingular integral treated in the sense of Hadamard finite value. We consider the case in which the exterior or interior problem is solved in a domain whose boundary is a closed smooth surface and the integral equation is written over that surface. A numerical scheme for solving the integral equation is constructed with the use of quadrature formulas of the type of the method of discrete singularities with a regularization for the use of an irregular grid. We prove the convergence, uniform over the grid points, of the numerical solutions to the exact solution of the hypersingular equation and, in addition, the uniform convergence of the values of the approximate finite-difference derivative operator on the numerical solution to the values on the projection of the exact solution onto the subspace of grid functions with nodes at the collocation points.  相似文献   

14.
In this paper, we study the application of some convergence acceleration methods to Fourier series, to orthogonal series, and, more generally, to series of functions. Sometimes, the convergence of these series is slow and, moreover, they exhibit a Gibbs phenomenon, in particular when the solution or its first derivative has discontinuities. It is possible to circumvent, at least partially, these drawbacks by applying a convergence acceleration method (in particular, the -algorithm) or by approximating the series by a rational function (in particular, a Padé approximant). These issues are discussed and some numerical results are presented. We will see that adding its conjugate series as an imaginary part to a Fourier series greatly improves the efficiency of the algorithms for accelerating the convergence of the series and reducing the Gibbs phenomenon. Conjugacy for series of functions will also be considered.  相似文献   

15.
The key aim of the present study is to attain nondifferentiable solutions of extended wave equation by making use of a local fractional derivative describing fractal strings by applying local fractional homotopy perturbation Laplace transform scheme. The convergence and uniqueness of the obtained solution by using suggested scheme is also examined. To determine the computational efficiency of offered scheme, some numerical examples are discussed. The results extracted with the aid of this technique verify that the suggested algorithm is suitable to execute, and numerical computational work is very interesting.  相似文献   

16.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

17.
In this paper, the modification of double Laplace decomposition method is proposed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.  相似文献   

18.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

19.
The inverse electrocardiography problem related to medical diagnostics is considered in terms of potentials. Within the framework of the quasi-stationary model of the electric field of the heart, the solution of the problem is reduced to the solution of the Cauchy problem for the Laplace equation in R 3. A numerical algorithm based on the Tikhonov regularization method is proposed for the solution of this problem. The Cauchy problem for the Laplace equation is reduced to an operator equation of the first kind, which is solved via minimization of the Tikhonov functional with the regularization parameter chosen according to the discrepancy principle. In addition, an algorithm based on numerical solution of the corresponding Euler equation is proposed for minimization of the Tikhonov functional. The Euler equation is solved using an iteration method that involves solution of mixed boundary value problems for the Laplace equation. An individual mixed problem is solved by means of the method of boundary integral equations of the potential theory. In the study, the inverse electrocardiography problem is solved in region Ω close to the real geometry of the torso and heart.  相似文献   

20.
Using bivariate generating functions, we prove convergence of the Grünwald–Letnikov difference scheme for the fractional diffusion equation (in one space dimension) with and without central linear drift in the Fourier–Laplace domain as the space and time steps tend to zero in a well-scaled way. This implies convergence in distribution (weak convergence) of the discrete solution towards the probability of sojourn of a diffusing particle. The difference schemes allow also interpretation as discrete random walks. For fractional diffusion with central linear drift we show that in the Fourier–Laplace domain the limiting ordinary differential equation coincides with that for the solution of the corresponding diffusion equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号