首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We synthesized a magnesium-aluminium hydrotalcite and used it as a catalyst in the Baeyer-Villiger (BV) oxidation of cyclohexanone with a mixture of 30% aqueous hydrogen peroxide and benzonitrile as oxidant. The hydrotalcite proved an excellent catalyst for the process. The influence of experimental variables was examined in depth in order to bring the working conditions as close as possible to those usable on an industrial scale. We optimized the cyclohexanone/hydrogen peroxide/benzonitrile proportion and used various nitriles, solvents and amounts of catalyst, benzonitrile and methanol proving the most effective nitrile and solvent, respectively, for the intended purpose. The reaction was found to occur to an acceptable extent with other carbonyl compounds as substrates; by exception, α,β-unsaturated carbonyl compounds provided poor results by effect of their undergoing competitive epoxidation of their double bonds.  相似文献   

2.
Hydrotalcites (HTs) in variable Mg/Al ratios were used as catalysts for the Baeyer-Villiger (BV) oxidation of cyclic ketones with hydrogen peroxide. All HTs studied were found to be active in the BV oxidation of cyclohexanone, their activity increases with increasing Mg/Al ratio. The reaction, which was conducted under very mild conditions (viz. atmospheric pressure and a temperature of 70 °C), provided conversions above 70% with 100% selectivity only after 6 h. This outcome was found to require the presence of a nitrile in the reaction medium, so a mechanism involving adsorption of the nitrile and cyclohexanone onto the catalyst is proposed that is consistent with the experimental results. Based on the proposed mechanism, the presence of a surfactant should result in improved conversion and catalytic activity, as was indeed observed with sodium dodecylsulfate in the reaction medium. The best catalyst among those tested was used with other cyclic ketones and found to provide excellent conversion and selectivity results in most cases.  相似文献   

3.
N-Boc derivatives of Met, Cys, and Trp, the properties of which resemble those of the respective amino acid residues present in proteins, are efficiently oxidized by methyltrioxorhenium and H2O2. A high regioselectivity for the oxidation of these residues when embedded into peptides was also found.  相似文献   

4.
Sn-aniline complex was prepared by a simple procedure.Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline complex.  相似文献   

5.
A variety of organosulfur compounds have been selectively oxidized to the corresponding sulfoxides by either H2O2 or HNO3 using a newly developed solid acid catalyst composed of 84.5% of TiO2 and 15.5% of [Ti4H11(PO4)9nH2O (n = 1-4). The chemoselective oxidation of sulfides in the presence of vulnerable groups such as -CN, -CC-, -CHO, or -OH, as well as sulfoxidation of substrates like benzothiazole, glycosyl sulfide, and dibenzothiophenes is some of the important attribute of the protocol. Nitric acid, under the present experimental conditions, brings about relatively better selectivity than hydrogen peroxide.  相似文献   

6.
可再生生物质资源的开发与利用能够缓解化石燃料产生的温室气体对环境的负面影响.在生物质燃料制备过程中联产高附加值化学品能大幅提高生物质炼制的经济性.愈创木酚是常见的木质纤维素快速热解产物.本文研究了低温液相氧化愈创木酚制备马来酸,并重点考察了催化剂添加量、pH值、反应时间和反应温度等反应条件的影响.研究发现,在钛硅沸石-过氧化氢碱溶液氧化反应体系中(80℃,pH=13.3),2030mol%的愈创木酚可以选择性转化为马来酸.同时初步探讨了愈创木酚氧化开环转化为马来酸的反应机理.  相似文献   

7.
Poly(4-vinylpyridine-co-divinylbenzene) supported iron(III) catalysts were developed for the selective oxidation of toluene to benzoic acid in the presence of H2O2. The influence of the DVB content on the capacity of immobilized Fe(III) and on the catalytic activities of the polymeric complexes was investigated. The extent of Fe(III) uptake by the copolymers varied slightly with the concentration of DVB. The catalytic activities generally increase with increasing degree of crosslinker from 2 to 10% and decrease further with increasing the DVB content. Under the optimal conditions (80 °C, 6 h), the catalyst containing 10% DVB was found to be highly efficient in conversion of toluene to benzoic acid with 90% conversion and 96% selectivity.  相似文献   

8.
The present work reports for the first time on the synthesis, characterization and performance of vanadium hexacyanoferrate (VHCF) as electrocatalyst of hydrogen peroxide. VHCF was synthesized by mixing V2O5 · nH2O xerogel with ascorbic acid and K4[Fe(CN)6] in double distilled water. X-ray powder diffraction, energy dispersive spectroscopy, scanning electron microscopy, and IR-spectroscopy data suggest the formation of nanocrystalline (mean crystal size 11 nm) compound with a tentative molecular formula K2(VO)3[Fe(CN)6]2. Composite films of VHCF with poly(vinyl alcohol) were developed over a glassy carbon electrode, and then covered with different (neutral, positively or negatively charged) membranes. The effect of each membrane on the working stability of the resultant sensors was evaluated. Cyclic voltammetry experiments showed that composite films exhibit a pair of reversible redox peaks, and a remarkable low potential electrocatalysis on both the reduction and oxidation of hydrogen peroxide. A linear calibration curve over the concentration range 0.01–3.0 mM H2O2 was constructed. Limit of detection (S/N = 3) of 4 μM H2O2 was calculated. The proposed transducer is quite selective to hydrogen peroxide. No response was observed in the presence of 10 mM ascorbic acid.  相似文献   

9.
In this study, a new facile preparation method of nanocomposites consisting of graphene oxide and manganese dioxide nanowires(GO/MnO_2 NW_s) was developed. The morphology, structure and composition of the resulted products were characterized by transmission electron microscopy, X-ray diffraction and N_2 adsorption and desorption. The GO/MnO_2 nanocomposite was used as an electrode material for non-enzymatic determination of hydrogen peroxide. The proposed sensor exhibits excellent electrocatalytic performance for the determination of hydrogen peroxide in phosphate buffer solution(PBS, pH7) at an applied potential of 0.75 V. The non-enzymatic biosensor for determination of hydrogen peroxide displayed a wide linear range of 4.90 mmol L~(-1)–4.50 mmol L~(-1)with a correlation coefficient of 0.9992, a low detection limit of 0.48 mmol L~(-1) and a high sensitivity of 191.22μA(mmol L~(-1))~(-1)cm~(-2)(signal/noise, S/N = 3). Moreover, the non-enzymatic biosensor shows an excellent selectivity.  相似文献   

10.
利用溶胶-凝胶法合成纳米NiCo2O4,并利用X射线衍射和透射电镜分析其结构和表面形貌. 结果表明NiCo2O4具有尖晶石结构, 平均粒径约为15 nm. 利用电势线性扫描和恒电势法测定了其对H2O2在碱性溶液中电化学还原反应的催化性能. 发现NiCo2O4对H2O2电化学还原具有高的催化活性和稳定性, 在H2O2浓度低于0.6 mol·L-1时, 其电化学还原反应主要通过直接还原途径进行. 以NiCo2O4为阴极催化剂的Al-H2O2半燃料电池在室温下的开路电压达1.6 V; 在1.0 mol·L-1 H2O2溶液中, 峰值功率密度达209 mW·cm-2, 此时电流密度为220 mA·cm-2.  相似文献   

11.
Two oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)] · 1.58H2O (1) and [V3O3(CSHA)3(H2O)3] · 3CH3COCH3 (2) have been synthesized by reaction of VO43− with N-salicyl hydroxamic acid (SHAH3) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH3), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH2)(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0–5 °C) yields a stable oxoperoxovanadium(V) complex H[VO(O2)(PyDC)(H2O)] · 2.5H2O (4). All four complexes (14) have been characterized by spectroscopic (IR, UV–Vis, 51V NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons.  相似文献   

12.
Two new procedures were employed for studying the reaction of hydrogen atoms with hydrogen peroxide. The absorption in the UV-range was observed either for an acidic aqueous solution containing only hydrogen peroxide or for a similar solution but also containing an aliphatic alcohol. From the increase in absorption of various alcohol radicals, a rate constant of 3.5×107 dm3 mol−1 s−1 was determined. In addition, the rate constant for the reaction of hydroxyl radicals with hydrogen peroxide was determined to be 3.0×107 dm3 mol−1 s−1.  相似文献   

13.
A series of Zr based catalysts were synthesized using tetraneopentylzirconium as precursor complex and a silica partially dehydroxylated. Modifications of the Zr coordination sphere of the anchored complex, (SiO)ZrNp3 (Np = neopentyl), by hydrolysis or hydrogenolysis lead to catalysts showing unexpected activity for the expoxidation of cyclohexene and hydroxylation of phenol with H2O2.  相似文献   

14.
Various primary and secondary organic bromides were oxidized by hydrogen peroxide in refluxing ethanol to give the corresponding aldehydes/and ketones in high yield up to 94%; organic chlorides were oxidized to the corresponding aldehydes/and ketones by the same oxidant in ethanol in the presence of 10 mol % of KBr as the catalyst.  相似文献   

15.
Pd/Al2O3 catalysts were prepared by the impregnation method and were used for the direct formation of hydrogen peroxide from H2 and O2. The H2O2 concentration and selectivity were strongly dependent on the solubility of hydrogen in the reaction medium. The modification of the support by halogenate has a beneficial effect on the selectivity. The state of the active Pd on Pd/Al2O3 catalysts was studied using X-ray photoelectron spectroscopy, and Pd(0) was found to be active.  相似文献   

16.
Various strategies have been developed to improve the conversion for the Baeyer-Villiger oxidation. However, the catalytic effects of the Baeyer-Villiger oxidation for the mixed ketones are rarely reported, though it is also important for the natural and industrial separation processes. In this report, magnetite Cu modified Fe3O4 supported mesoporous silica microspheres (Cu-Fe3O4@mSiO2) have been successfully synthesized by two step direct hydrothermal method (DHT). Over 99% of cyclohexanone conversion was obtained with mild air oxidation and benzaldehyde as sacrificing agent over Cu-Fe3O4@mSiO2. The catalytic system also shows higher conversion rates for small molecular ketones in the mixed ketone reactants, which was attributed to the enhanced mass transfer effect and Fe-Cu composite active sites in the magnetite mesoporous silica microspheres. The catalyst could be recycled for four times with similar catalytic performance, which shows enhanced shape selectivity in aerobic Baeyer-Villiger oxidations for mixed cyclic ketones.  相似文献   

17.
Jan-Wei Shie 《Talanta》2009,78(3):896-75
A conductive biocomposite film (MWCNTs-NF-Hb) containing multi-walled carbon nanotubes (MWCNTs) incorporated with entrapped haemoglobin (Hb) in nafion (NF) has been synthesized on glassy carbon electrode (GCE), gold (Au), indium tin oxide (ITO) and screen printed carbon electrode (SPCE) separately by potentiostatic methods. The presence of both MWCNTs and NF in the biocomposite film enhances the surface coverage concentration (Γ), and increases the electron transfer rate constant (Ks) to 132%. The biocomposite film exhibits a promising enhanced electrocatalytic activity towards the reduction of O2, H2O2 and CCl3COOH. The cyclic voltammetry has been used for the measurement of electrocatalysis results of analytes by means of biocomposite film-modified GCEs. The MWCNTs-NF-Hb-modified GCEs’ sensitivity values are higher than the values obtained for other film modified GCEs. The surface morphology of the biocomposite films which have been deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. The studies have revealed that there was an incorporation of NF and immobilization of Hb on MWCNTs. Finally, the flow injection analysis has been used for the amperometric studies of analytes at MWCNTs-Hb and MWCNTs-NF-Hb film modified SPCEs. The amperometric study results have shown higher slope values for MWCNTs-NF-Hb biocomposite film.  相似文献   

18.
This paper reports the results obtained in the Baeyer-Villiger oxidation of cyclohexanone with a hydrogen peroxide/benzonitrile mixture as oxidant in the presence of synthetic metal hydroxides or their calcined products as catalysts. The metal hydroxides were obtained by coprecipitation. The best ε-caprolactone conversion results were provided by magnesium hydroxide.  相似文献   

19.
Summary Three metalloporphyrin complexes are used as peroxidase mimics in the oxidation of phenol by hydrogen peroxide.A kinetic model for the titled reaction is constructed.  相似文献   

20.
Selective oxidation of methane with hydrogen peroxide was catalyzed by several simple vanadium compounds in CH3CN. The reaction could afford formic acid as the major product. Vanadyl oxysulfate (VOSO4) was found to be an efficient catalyst. Specifically, the selectivity to formic acid of 70% at a methane conversion of 6.5% could be achieved over the VOSO4 catalyst under the reaction conditions of methane pressure 3.0 MPa and temperature 333 K for 4 h. The UV-Vis spectroscopic measurements revealed that the formation of V5+ species during the reaction might be vital for the methane activation. The reaction probably proceeded via radical mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号