首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new K-Fe-MnO/Si-2 catalyst has been developed for CO2 hydrogenation, which exhibits a fascinating reaction activity and light olefin selectivity for CO2 hydrogenation. Over the catalyst, it is observed that olefin selectivity increases apparently with reaction temperature and/or GHSV, while decreases when reaction pressure is up. Furthermore, the catalyst exhibits a better stability for CO2 hydrogenation. However, coke deposited on catalyst surface is formed at the beginning of the reaction period and then reached a stable state during CO2 hydrogenation. Generally, the K-Fe-MnO/Si-2 catalyst can be regenerated for CO2 hydrogenation, the same selectivity of C2=-C4=alkenes is regained without any decrease in catalyst activity with time on stream.  相似文献   

2.
研究了聚合物-超临界二氧化碳二元体系溶解性,并考查了添加共溶剂对溶解性的影响,结果表明,添加共溶剂会大大提高CO2的溶解度.此外,还研究了聚合物-溶剂-超临界二氧化碳三元体系在高压时的相行为,探讨了组分性质、含量等对温度 压力相图的影响.随着CO2含量的增加,压力-温度相图L-LV(单一液相向液气两相共存)边界线的斜率会出现突变点,发生由L-LV边界线向L-LL(单一液相向液液两相共存)边界线的过渡,而L-LV边界线对不同聚合物并不敏感.  相似文献   

3.
High selectivity to light alkenes can be achieved from CO and CO_2hydrogenation over K-Fe-MnO/Si-2 catalyst.The alkene selectivity isinsensitive to reaction temperature for CO hydrogenation,while apparentlyincreases for CO_2 hydrogenation with raising reaction temperature.An increasein alkene selectivity is observed for both CO and CO_2 hydrogenation with GHSVrising,While a decrease with the elevation of reaction pressure for both CO/H_2and CO_2/H_2 reaction.A two-step mechanism is suggested forCO_2 hydrogenation to form hydrocarbons,by which the variations incontributions of CO and HC as products of CO_2/H_2 reaction with change ofreaction temperature,GHSV and pressure are explained.Moreover,thecatalyst is favorable for selective production of light olefins,which can alsoconcern the slightly secondary reactions of light olefins to some extent.  相似文献   

4.
聚合物-溶剂-超临界CO2三元体系的相行为   总被引:2,自引:0,他引:2  
研究了聚合物-超临界二氧化碳二元体系溶解性,并考查了添加共溶剂对溶解性的影响,结果表明,添加共溶剂会大大提高CO2的溶解度.此外,还研究了聚合物-溶剂-超临界二氧化碳三元体系在高压时的相行为, 探讨了组分性质、含量等对温度-压力相图的影响.随着CO2含量的增加,压力-温度相图L-LV(单一液相向液气两相共存)边界线的斜率会出现突变点,发生由L-LV边界线向L-LL(单一液相向液液两相共存)边界线的过渡, 而L-LV边界线对不同聚合物并不敏感.  相似文献   

5.
The search for environmentally benign and economic process has been the impetus for much of the research involving epoxide and carbon dioxide coupling in view of the so called "green chemistry" and" atom economy ", since CO2 is a renewable resource and can be used as a safe and cheap C 1 building block to synthesize useful organic compounds without producing any coproducts.[1-2] One of the most attractive synthetic goals starting from carbon dioxide is the chemical fixation of CO2 onto epoxide to afford the five-membered cyclic carbonates (Scheme 1),which are excellent aprotic polar solvents and are used extensively as intermediates in the production of pharmaceuticals and fine chemicals.[3] In the last decades of the twentieth century numerous catalytic systems have been developed for this transformation. While some advances have been obtained, all suffer from either low catalyst stability/reactivity, the need for co-solvent, or the requirement for high pressure and/or catalyst costing expensive.[4] Therefore, to find an effective,not exrensive, environmentally benign and economic catalyst system is urgent.In this paper, chemical fixation of CO2 with mono-substituted terminal epoxides or cyclohexene oxide to form cyclic carbonates under the ZnCl2/[BMIm]Br Catalyst System without using additional organic solvents was achieved in excellent selectivity (>98%) and TOF(5410h-1) Besides,the pure cis-cyclic carbonate of cyclohexene oxide was obtained in this catalyst system.It was important to note that the catalyst could be recovered by simple vacuum distillation of the corresponding cyclic carbonates and could be used six times almost without losing its catalytic activity and selectivity. The catalyst system was found to be applicable to a variety of terminal epoxides and cyclohexene oxide, forming the corresponding cyclic carbonates in very high TOF and more than 98% selectivity. Based on the obtained results, we also propose the plausible mechanism for this chemical fixation reaction of CO2.  相似文献   

6.
Fe—Silicalite—2催化剂表面CO2加氢反应性能的研究   总被引:3,自引:0,他引:3  
研究了Fe/Silicalite-2催化剂CO2加氢低碳烯烃反应性能,利用CO2-TPD,CO2/H2-TPSR和CO/H2-TPSR表征手段,考察了铁含量及MnO助剂对Fe/Silicalite-2催化剂CO2吸附脱附及加氢反应性能的影响,表明随铁含量增加可提高催化剂对CO2的吸附能力,有利于提高CO2加氢反应的转化率。  相似文献   

7.
IntroductionAsoncofthemostabundantandcheapestcarbonsourccs,Co2u,ithsteadilyincreasingconcentrationintheatmospherenotonlyleadstothelossofcarbonsource,butalsocausesgrccnhouseeffects.Recently,Co2wastestedasafecdstockformcthanolproductionovcrdiffcrentcatalystsclse.'hcrell'21,butmostofthesecatalystswerebasedonthecombinationofcoppcrandzincandpreparedbycoprecipitation,ioncxchangcor'l3'4]Accordingtoextensivestudiesaboutsupports,SiO2wasoncoftheimpregnationl3'4]Accordingtoextensivestudiesaboutsupport…  相似文献   

8.
The effects of two polar co-solvents, chlorodifluoromethane and acetone, on the solubility and enthalpy of a solution of 1,4-naphthoquinone in supercritical (SC) CO2 were studied. We found that the dissolution process becomes less exothermic in the presence of the co-solvents relative to that in pure CO2, although the solubility is enhanced significantly by the co-solvents. This indicates that the increase in the solubility by adding co-solvents results from the increase of the entropy of solution. On the basis of the unexpected results we propose a new mechanism for the solubility enhancement of the solute by the co-solvents in supercritical fluids (SCF); this should be applicable to cases in which the local density of the SC solvent around the solute and the co-solvent is larger, and the co-solvent associates preferentially with the solute. The results are also very important for the understanding of other fundamental questions of SCF science, such as the effect of co-solvents on the thermodynamic and kinetic properties of the reactions in SCFs.  相似文献   

9.
The esterification reaction of phthalic anhydride with methanol was performed at different temperatures in a continuous flow glass microreactor at pressures up to 110 bar and using supercritical CO(2) as a co-solvent. The design is such that supercritical CO(2) can be generated inside the microreactor. Substantial rate enhancements were obtained, viz. a 53-fold increase was obtained at 110 bar and 60 degrees C. Supercritical CO(2) as a co-solvent gave rise to a 5400-fold increase (both with respect to batch experiments at 1 bar at the same temperature).  相似文献   

10.
CO2/H2和(CO/CO2)+H2低压合成甲醇催化过程的本质   总被引:8,自引:0,他引:8  
通过在Cu/ZnO/Al2O3催化剂上CO2+H2,CO+H2和(CO/CO2)+H2催化反应动力学研究对合成甲醇动力学和反应机理进行了细致分析,提出合成甲醇的反应机理,解释了在(CO/CO2)+H2合成甲醇过程中少量CO2的作用及合成甲醇的直接碳源。  相似文献   

11.
ZrO2—SiO2负载Cu—Ni催化剂的CO2加氢反应性能   总被引:7,自引:0,他引:7  
采用表面反应改性法,制备了ZrO2-SiO2(ZrSiO)表面复合物载体,用等体积浸渍法制备了ZrSiO担载的Cu-Ni双金属催化剂,借助BET、TPR、IR和微反等技术,研究了ZrSiO及其负载的Ni、Cu双金属催化剂的表面构造,化学吸附及催化CO2加氢的反应性能,结果表明,ZrSiO表面主要是价联型结构,ZrO2引入SiO2表面,可以有效地促进CuO和NiO的还原,在ZrSiO负载的Cu-Ni催化剂表面的Cu或Ni位,CO2发生化学 吸附形成线、剪式、卧式吸附态,在该催化剂上CO2的加氢反应产物主要是CH3OH3、CH4、CO和H2O生成CH3OH的选择性与催化剂组成及反应条件密切相关,在适当的条件,CH3OH的选择性大于90%。  相似文献   

12.
Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non‐monotonic size‐dependence of the selectivity in cube‐shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.  相似文献   

13.
The activity and the selectivity to light alkenes of silicalite-2 (Si-2) zeolite supported F'e catalyst tor CO hydrogenation can he improved obviously with the addition of K2O and MnO promoters. The results of CO hydrogenation, CO-TPD, CO/H2-TPSR, C2H4/H2-TPSR and C2H4/H2 pulse reaction over K-Fe-MnO/Si-2 catalysts clearly show that the K2O additive into Fe-MnO/Si-2 catalyst leads to a remarkable increase in both the capacity and strength of the strong CO ad-species that will produce much more |Cad| via their disproportionation at higher temperatures. This results in an increase in the CO conversion and the selectivity to light olefins, and a decrease in CH4 formation. Moreover, K2O can suppress the disproportionate of C2H4 that occurs during the reaction as a side-reaction Meanwhile, the MnO promoter mainly prohibits the hydrogenation of C2H4 and C3H6, which is favorable to enhancing the selectivity to C2H4 and C3H6 and decreasing the formation of C2H6, and C3H8. It is also of interest that MnO has har  相似文献   

14.
lntroductionInordcrtoselcctivcl}'produccIightoIcfinsfroms}'ngas.thcbinderusedforimprovingthecatal}'ststrcngthshouldbcfavorabIcforprimary'formingofligl1tolcfinsfroms}ngasandforprohibitingsidereactionsoflightoIcfi.sIll.lthasbccnshownthattheundesirablcstrengthofsilicalitc-2zcolitccanbcimprovcdb}addingbindcrs.Hot`ycver.thcadditionofthcbinder`"illcauscsomcchangcsinthcph}'sical-chcmicalstatcofthecatal}ticactivemetalas``cllasitscatal}ticbcha.io,ll'2I.InourprcviouspaperTiO2wasprovedtobcadcsirablcbi…  相似文献   

15.
芥子气模拟剂2-氯乙基乙基硫醚的光催化降解   总被引:4,自引:0,他引:4  
利用连续流动微反、原位红外和GC/MS等手段考察了芥子气模拟剂2-氯乙基乙基硫醚(2-CEES)在P25 TiO2上的光催化降解反应,证实CO2和H2O是这个反应的最终产物.详细的跟踪分析表明,除了CO2和H2O外,在反应的气相混合物中可检测到C2H4、CH3CHO、CH4、CO、HCl和H2S;少量小分子的羧酸、醚和砜;微量C2H5SC2H5、C2H5S2C2H5、C2H5SC2H4Cl和CH2ClCH2Cl等中间产物;在反应后的催化剂表面可检测到C2H5S2C2H5、C2H5SC2H4OH、C4H9S2C2H5和C2H5S2C2H4OH、等物.根据这些结果提出了2-CEES光催化降解的反应机理,推断2-CEES的光催化降解涉及脱氯、C-S键断裂、有机硫化物光聚合和裂解等复杂过程最终转化为CO2和H2O.认为各种硫物种在表面的积聚引起了催化剂的缓慢失活.  相似文献   

16.
随着工业发展和全球人口的持续增长,人类对化石燃料的消耗日益增加,从而导致大气中二氧化碳含量的显著增加以及与之相伴的一系列环境问题.电化学还原二氧化碳制备高附加值的燃料和化学品具有稳定的效率和较高的经济可行性等特点,目前已成为一种有前景的策略来缓解当前全球面临的能源短缺和气候变暖问题.然而,电催化二氧化碳还原过程存在反应...  相似文献   

17.
This paper deals with thermodynamic chemical equilibrium analysis using the method of direct minimization of Gibbs free energy for all possible CH4 and CO2 reactions. The effects of CO2/CH4 feed ratio, reaction temperature, and system pressure on equilibrium composition, conversion, selectivity and yield were studied. In addition, carbon and no carbon formation regions were also considered at various reaction temperatures and CO2/CH4 feed ratios in the reaction system at equilibrium. It was found that the reaction temperature above 1100 K and CO2/CH4 ratio=1 were favourable for synthesis gas production with H2/CO ratio unity, while carbon dioxide oxidative coupling of methane (CO2 OCM) reaction to produce ethane and ethylene is less favourable thermodynamically. Numerical results indicated that the no carbon formation region was at temperatures above 1000 K and CO2/CH4 ratio larger than 1.  相似文献   

18.
K-Fe-MnO/Silicalite-2 is a desirable catalyst for the production of light olefins from CO2 hydrogenation The activity can be improved greatly with increasing the Fe loading, and the selectivities to hydrocarbons rise with Fe loading increase However, an ambiguous effect of Fe loading on the selectivity of light olefin in hydrocarbon products is observed. The CO2 hydrogenation containing a two-step mechanism CO2+H2=CO+H2O, a reversible water gas shift reaction, and CO+(m/2n+1)H2 =1/nCnHm+H2O2, a Frscher-Tropsch reaction, is suggested by the results of CO2-TPD and CO2/H2-TPSR as well as CO/H2-TPSR characterizations.  相似文献   

19.
用等体积浸渍法制备了MoO3 SiO2 (MoSiO)表面复合氧化物负载的Cu Ni K2 O催化剂。利用IR ,TPR ,TPD以及微反技术研究了K2 O助剂对CO2 和CH3OH在Cu Ni MoSiO催化剂表面上吸附和合成DMC(碳酸二甲酯 )反应性能的影响。结果表明 :K2 O助剂的加入 ,使CO2 在催化剂表面吸附强度增加 ,当K2 O含量达Cu Ni总量的 15 %时 ,CO2 在催化剂表面上吸附后生成K2 CO3;CH3OH在催化剂表面上的解离吸附态 (CH3O- H )的吸附强度减弱 ;CO2 和CH3OH在Cu Ni K2 O MoSiO催化剂表面反应主要产物为DMC ,H2 O ,CO和CH2 O。随着K2 O助剂的加入 ,反应转化率在 10 %之前增加 ,之后下降 ,DMC选择性稍有提高。副产物 (CO和CH2 O)的选择性下降。根据实验结果探讨了K2 O对催化剂表面活性中心的电荷分布的影响。  相似文献   

20.
CO对CO2加氢合成甲醇的影响   总被引:2,自引:0,他引:2  
甲醇是重要的有机化工原料,同时它也已被确认为尾气污染少、辛烷值高的汽、柴油接烧的洁净燃料和大功率燃料电池的燃料[1].随着世界石油贮量的枯竭,甲醇汽车将快速发展,所以CO2加氢合成甲醇具有广阔的应用前景和深远的理论意义.铜基催化剂上CO2加氢主要存在二个竞争反应[2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号