首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two-grid methods are studied for solving a two dimensional nonlinear parabolic equation using finite volume element method. The methods are based on one coarse-grid space and one fine-grid space. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine-grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. The two-grid methods achieve asymptotically optimal approximation as long as the mesh sizes satisfy h=O(H3|lnH|)h=O(H3|lnH|). As a result, solving such a large class of nonlinear parabolic equations will not be much more difficult than solving one single linearized equation.  相似文献   

2.
The nonoxerlapping domain deoomposition method for parabolic partial differential equation on general domain is considered. A kind of domain decomposition that uses the finite element procedure ks given. The problem.over the domains can be implemented on parallel computer. Convergence analysis is also presented.  相似文献   

3.
Summary In this paper, we study some additive Schwarz methods (ASM) for thep-version finite element method. We consider linear, scalar, self adjoint, second order elliptic problems and quadrilateral elements in the finite element discretization. We prove a constant bound independent of the degreep and the number of subdomainsN, for the condition number of the ASM iteration operator. This optimal result is obtained first in dimension two. It is then generalized to dimensionn and to a variant of the method on the interface. Numerical experiments confirming these results are reported. As is the case for other additive Schwarz methods, our algorithms are highly parallel and scalable.This work was supported in part by the Applied Math. Sci. Program of the U.S. Department of Energy under contract DE-FG02-88ER25053 and, in part, by the National Science Foundation under Grant NSF-CCR-9204255  相似文献   

4.
We consider a numerical scheme for a class of degenerate parabolic equations, including both slow and fast diffusion cases. A particular example in this sense is the Richards equation modeling the flow in porous media. The numerical scheme is based on the mixed finite element method (MFEM) in space, and is of one step implicit in time. The lowest order Raviart–Thomas elements are used. Here we extend the results in Radu et al. (SIAM J Numer Anal 42:1452–1478, 2004), Schneid et al. (Numer Math 98:353–370, 2004) to a more general framework, by allowing for both types of degeneracies. We derive error estimates in terms of the discretization parameters and show the convergence of the scheme. The features of the MFEM, especially of the lowest order Raviart–Thomas elements, are now fully exploited in the proof of the convergence. The paper is concluded by numerical examples.  相似文献   

5.
This work deals with the efficient numerical solution of nonlinear parabolic problems posed on a two-dimensional domain Ω. We consider a suitable decomposition of domain Ω and we construct a subordinate smooth partition of unity that we use to rewrite the original equation. Then, the combination of standard spatial discretizations with certain splitting time integrators gives rise to unconditionally contractive schemes. The efficiency of the resulting algorithms stems from the fact that the calculations required at each internal stage can be performed in parallel.  相似文献   

6.
We derive residual based a posteriori error estimates of the flux in L 2-norm for a general class of mixed methods for elliptic problems. The estimate is applicable to standard mixed methods such as the Raviart–Thomas–Nedelec and Brezzi–Douglas–Marini elements, as well as stabilized methods such as the Galerkin-Least squares method. The element residual in the estimate employs an elementwise computable postprocessed approximation of the displacement which gives optimal order.  相似文献   

7.
Summary A uniform framework for the study of upwinding schemes is developed. The standard finite element Galerkin discretization is chosen as the reference discretization, and differences between other discretization schemes and the reference are written as artificial diffusion terms. These artificial diffusion terms are spanned by a four dimensional space of element diffusion matrices. Three basis matrices are symmetric, rank one diffusion operators associated with the edges of the triangle; the fourth basis matrix is skew symmetric and is associated with a rotation by /2. While finite volume discretizations may be written as upwinded Galerkin methods, the converse does not appear to be true. Our approach is used to examine several upwinding schemes, including the streamline diffusion method, the box method, the Scharfetter-Gummel discretization, and a divergence-free scheme.The work of this author was supported by the Office of Naval Research under contract N00014-89J-1440The work of this author was supported through KWF-Landis/Gyr Grant 1496, AT & T Bell Laboratories, and Cray Research  相似文献   

8.
The maximum norm error estimates of the Galerkin finite element approximations to the solutions of differential and integro-differential multi-dimensional parabolic problems are considered. Our method is based on the use of the discrete version of the elliptic-Sobolev inequality and some operator representations of the finite element solutions. The results of the present paper lead to the error estimates of optimal or almost optimal order for the case of simplicial Lagrangian piecewise polynomial elements.  相似文献   

9.
Summary In this first of two papers, computable a posteriori estimates of the space discretization error in the finite element method of lines solution of parabolic equations are analyzed for time-independent space meshes. The effectiveness of the error estimator is related to conditions on the solution regularity, mesh family type, and asymptotic range for the mesh size. For clarity the results are limited to a model problem in which piecewise linear elements in one space dimension are used. The results extend straight-forwardly to systems of equations and higher order elements in one space dimension, while the higher dimensional case requires additional considerations. The theory presented here provides the basis for the analysis and adaptive construction of time-dependent space meshes, which is the subject of the second paper. Computational results show that the approach is practically very effective and suggest that it can be used for solving more general problems.The work was partially supported by ONR Contract N00014-77-C-0623  相似文献   

10.
In this paper, we derive two stabilized discontinuous finite element formulations, symmetric and nonsymmetric, for the Stokes equations and the equations of the linear elasticity for almost incompressible materials. These methods are derived via stabilization of a saddle point system where the continuity of the normal and tangential components of the velocity/displacements are imposed in a weak sense via Lagrange multipliers. For both methods, almost all reasonable pair of discontinuous finite element spaces can be used to approximate the velocity and the pressure. Optimal error estimate for the approximation of both the velocity of the symmetric formulation and pressure in L2L2 norm are obtained, as well as one in a mesh-dependent norm for the velocity in both symmetric and nonsymmetric formulations.  相似文献   

11.
Summary A generalized Stokes problem is addressed in the framework of a domain decomposition method, in which the physical computational domain is partitioned into two subdomains 1 and 2.Three different situations are covered. In the former, the viscous terms are kept in both subdomains. Then we consider the case in which viscosity is dropped out everywhere in . Finally, a hybrid situation in which viscosity is dropped out only in 1 is addressed. The latter is motivated by physical applications.In all cases, correct transmission conditions across the interface between 1 and 2 are devised, and an iterative procedure involving the successive resolution of two subproblems is proposed.The numerical discretization is based upon appropriate finite elements, and stability and convergence analysis is carried out.We also prove that the iteration-by-subdomain algorithms which are associated with the various domain decomposition approaches converge with a rate independent of the finite element mesh size.This work was partially supported by CIRA S.p.A. under the contract Coupling of Euler and Navier-Stokes equations in hypersonic flowsDeceased  相似文献   

12.
Summary. A semidiscrete mixed finite element approximation to parabolic initial-boundary value problems is introduced and analyzed. Superconvergence estimates for both pressure and velocity are obtained. The estimates for the errors in pressure and velocity depend on the smoothness of the initial data including the limiting cases of data in and data in , for sufficiently large. Because of the smoothing properties of the parabolic operator, these estimates for large time levels essentially coincide with the estimates obtained earlier for smooth solutions. However, for small time intervals we obtain the correct convergence orders for nonsmooth data. Received July 30, 1995 / Revised version received October 14, 1996  相似文献   

13.
Summary. In this paper we consider two aspects of the problem of designing efficient numerical methods for the approximation of semilinear boundary value problems. First we consider the use of two and multilevel algorithms for approximating the discrete solution. Secondly we consider adaptive mesh refinement based on feedback information from coarse level approximations. The algorithms are based on an a posteriori error estimate, where the error is estimated in terms of computable quantities only. The a posteriori error estimate is used for choosing appropriate spaces in the multilevel algorithms, mesh refinements, as a stopping criterion and finally it gives an estimate of the total error. Received April 8, 1997 / Revised version received July 27, 1998 / Published online September 24, 1999  相似文献   

14.
In this paper, the semi-discrete and full discrete biquadratic finite volume element schemes based on optimal stress points for a class of parabolic problems are presented. Optimal order error estimates in H1 and L2 norms are derived. In addition, the superconvergences of numerical gradients at optimal stress points are also discussed. A numerical experiment confirms some results of theoretical analysis.  相似文献   

15.
Summary Iterative schemes for mixed finite element methods are proposed and analyzed in two abstract formulations. The first one has applications to elliptic equations and incompressible fluid flow problems, while the second has applications to linear elasticity and compressible Stokes problems. These schemes are constructed through iteratively penalizing the mixed finite element scheme, of which iterated penalty method and augmented Lagrangian method are special cases. Convergence theorems are demonstrated in abstract formulations in Hilbert spaces, and applications to individual physical problems are considered as examples. Theoretical analysis and computational experiments both show that the proposed schemes have very fast convergence; a few iterations are normally enough to reduce the iterative error to a prescribed precision. Numerical examples with continuous and discontinuous coefficients are presented.  相似文献   

16.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

17.
This work concerns analysis and error estimates for optimal control problems related to implicit parabolic equations. The minimization of the tracking functional subject to implicit parabolic equations is examined. Existence of an optimal solution is proved and an optimality system of equations is derived. Semi-discrete (in space) error estimates for the finite element approximations of the optimality system are presented. These estimates are symmetric and applicable for higher-order discretizations. Finally, fully-discrete error estimates of arbitrarily high-order are presented based on a discontinuous Galerkin (in time) and conforming (in space) scheme. Two examples related to the Lagrangian moving mesh Galerkin formulation for the convection-diffusion equation are described.  相似文献   

18.
Two parallel domain decomposition procedures for solving initial-boundary value problems of parabolic partial differential equations are proposed. One is the extended D-D type algorithm, which extends the explicit/implicit conservative Galerkin domain decomposition procedures, given in [5], from a rectangle domain and its decomposition that consisted of a stripe of sub-rectangles into a general domain and its general decomposition with a net-like structure. An almost optimal error estimate, without the factor H−1/2 given in Dawson-Dupont’s error estimate, is proved. Another is the parallel domain decomposition algorithm of improved D-D type, in which an additional term is introduced to produce an approximation of an optimal error accuracy in L2-norm.  相似文献   

19.
A spectral element method for solving parabolic initial boundary value problems on smooth domains using parallel computers is presented in this paper. The space domain is divided into a number of shape regular quadrilaterals of size h and the time step k   is proportional to h2h2. At each time step we minimize a functional which is the sum of the squares of the residuals in the partial differential equation, initial condition and boundary condition in different Sobolev norms and a term which measures the jump in the function and its derivatives across inter-element boundaries in certain Sobolev norms. The Sobolev spaces used are of different orders in space and time. We can define a preconditioner for the minimization problem which allows the problem to decouple. Error estimates are obtained for both the h and p versions of this method.  相似文献   

20.
Summary For solving second order elliptic problems discretized on a sequence of nested mixed finite element spaces nearly optimal iterative methods are proposed. The methods are within the general framework of the product (multiplicative) scheme for operators in a Hilbert space, proposed recently by Bramble, Pasciak, Wang, and Xu [5,6,26,27] and make use of certain multilevel decomposition of the corresponding spaces for the flux variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号