首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer as an important component of polymer dispersed liquid crystal (PDLC) has a great influence on electro-optical properties. In this letter, the effect of molecular weight of polymer matrix on the electro-optical properties of PDLC films was investigated with reversible addition fragmentation transfer (RAFT) polymerization. It was found that the saturation voltage and memory effect were apparently influenced by molecular weight of polymer which can be regulated efficiently by irradiation time, while the morphology of liquid crystal droplets kept unaltered. It was estimated that the increase of molecular weight of polymer enhanced entanglement between polymer and liquid crystal, which induced the different surface interaction and electro-optical properties.  相似文献   

2.
ABSTRACT

In this paper, polymer dispersed liquid crystal (PDLC) films based on epoxy-mercaptan system were prepared by thermal-initiated polymerization. The effects of the liquid crystal (LC) content, the proportion and the functionality of epoxy monomers on the polymer structures and electro-optical properties of the as-made PDLC films were investigated systematically. It was found that the morphologies of the polymer matrix can be altered from polymer meshes to polymer balls by increasing the LC content as well as the functionality of epoxy monomers. Accordingly, the electro-optical properties could be regulated by the morphologies of polymer networks. Especially, the as-made PDLC films with homogeneous porous structures exhibited the optimal electro-optical properties. Consequently, this work offers a meaningful approach to control the microstructures and optimize the electro-optical properties of PDLC films, which indeed can form a wonderful footstone for the wide application of PDLC.  相似文献   

3.
ABSTRACT

There is a widely applied prospect of electrical controlled liquid crystal (LC) light-scattering device. Numerous electrical controlled LC light-scattering technologies have been studied, but each technology has its own shortcomings, such as high driving voltage, high hysteresis, complex electrode structure, and serious heating. In this work, the composite of LC and polymer microspheres are used to fabricate light-scattering devices. This device is operated by the vertical electric field and does not require complex preparation process. LC/polymer microsphere composite has the advantages of low driving voltage and zero hysteresis. The role of microspheres in the composites is to change the size and density of a refractive-index-mismatched micro-domain. The effects of the ratio, particle size, and refractive index of microspheres on the optical characteristics of a composite are studied. The normal directional light transmittance at the transparent state and light-scattering state decreases with an increasing weight ratio of microspheres. The particle size of microspheres has negligible influence on the electro-optical properties of composites when the weight ratio of microspheres is small. The LCs doped with Polymethylsilsesquioxane (PMSQ) microspheres or polymethyl methacrylate (PMMA) microspheres are compared, and the mismatched refractive index and density of micro-domain show the influence on the electro-optical properties of the composites.  相似文献   

4.
Dual frequency addressing of nematic pi-cell devices produces submillisecond switching times since the liquid crystal can be driven both parallel and perpendicular to the applied field and there is no kick-back of the director during switching. The nucleation of the V state in devices containing dual frequency liquid crystal materials is much slower than that in conventional pi-cells, however. Polymer stabilization of the V state eliminates the need for nucleation each time the device is used. In this paper we present a polymer stabilized pi-cell containing a dual frequency liquid crystal material, and show that the presence of the polymer network significantly influences the switching of the device. Some optimization of the addressing scheme is required when switching the polymer stabilized device in order to avoid transient formation of the twisted state. Using this optimization, the switching time is under 3 ms across a wide range of addressing voltages.  相似文献   

5.
A study of nanoporous polymer gratings, with controllable nanostructured porosity, as a function of grating performance, photopolymerization kinetics and morphology is presented. Modifying the standard holographic polymer dispersed liquid crystal (H-PDLC) system, by including a non-reactive solvent, results in a layered, nanoporous morphology and produces reflective optical elements with excellent optical performance of broadband reflection. The addition of the non-reactive solvent in the pre-polymer mixture results in a morphology typified by void/polymer layer-by-layer structures if sufficient optical energy is used during the holographic writing process. The duration and intensity of optical exposure necessary to form well-aligned nanoporous structures can only be obtained in the modified system by (a) illumination under longer time of holographic interference patterning (30 min) or (b) illumination under very short time of holographic interference patterning (30 s) and followed by post-curing using homogeneous optical exposure for 60 min. Comparatively, a typical H-PDLC is formed in less than 1 min. To further understand the differences in the formation of these two analogous materials, the temporal dynamics of the photoinitiation and polymerization (propagation) kinetics were examined. It is shown herein that the writing exposure gives a cross-linked polymer network that is denser in the bright regions. With 60% (or even 45%) acrylate conversion, almost no free monomer would be left after the writing. Continued exposure serves primarily to add cross-links. This has the tendency to collapse the network, especially the less dense portions, which in effect get glued down to the more dense parts. To the extent that the solvent increases the mobility of the polymer network, this process will be aided. Equally important, the size of the periodic nanopores can be varied from 10 to 50 nm by controlling either the LC concentration in the pre-polymer mixture or by controlling the time of the homogeneous post-cure.  相似文献   

6.
Highly mono-sized poly(methyl methacrylate) (PMMA)/liquid crystal (LC) microcapsules having a mono-sized single LC domain were prepared by the solute codiffusion method and solvent evaporation. The size of the LC domain in the microcapsules could be controlled by the amount of LC introduced during the swelling stage. The electro-optical properties of the polymer dispersed liquid crystal (PDLC) prepared by using the microcapsules was highly improved. In particular, the threshold voltage was lowered and the switching behaviour with an applied electric field was sharpened drastically compared with PDLC prepared simply by solvent evaporation-induced phase separation.  相似文献   

7.
Highly mono-sized poly(methyl methacrylate) (PMMA)/liquid crystal (LC) microcapsules having a mono-sized single LC domain were prepared by the solute codiffusion method and solvent evaporation. The size of the LC domain in the microcapsules could be controlled by the amount of LC introduced during the swelling stage. The electro-optical properties of the polymer dispersed liquid crystal (PDLC) prepared by using the microcapsules was highly improved. In particular, the threshold voltage was lowered and the switching behaviour with an applied electric field was sharpened drastically compared with PDLC prepared simply by solvent evaporation-induced phase separation.  相似文献   

8.
We prepared and characterized a series of side-chain liquid crystalline (LC) homo- and copolyoxetanes containing varying fractions of the mesogenic 4-decyloxy-4'-cyanobiphenyl pendent and the non-mesogenic propoxy group. The miscibility of homo- and copolyoxetanes (Co-LCPs) with E7 also was studied. The LC properties of the Co-LCP/E7 mixtures were unique in that, although E7 is a nematic mixture, all the Co-LCP/E7 mixtures form layered smectic mesophases. Among the mixtures, the composition of 30 wt % of LCP bearing 16 mol. % of the mesogenic pendant, Co(16)-LCP, and 70 wt % of E7 formed the smectic phase over a broad range of temperature (-70 to 35°C), although the isotropization temperature of Co(16)-LCP itself was below room temperature. A flexible plastic display was constructed utilizing this mixture and its display characteristics were evaluated. For a device with a 10 µm thick active layer, the threshold voltage was about 30 V and exhibited a rising response time of 200 ms. The most remarkable observation made was that the blends revealed excellent memory behaviour.  相似文献   

9.
We synthesised a series of vitamin-based and renewable tocopherol-substituted polystyrene (PTOC#, # = 20, 40, 60, 80 and 100), where # is the molar content of tocopherol moiety, using polymer analogous reactions to investigate their liquid crystal (LC) alignment properties. In general, the LC cell fabricated using the polymer film having a higher molar content of tocopherol side group showed vertical LC alignment behaviour. The vertical alignment (VA) behaviour was well correlated with the surface energy value of these polymer films. For example, VA was observed when the surface energy values of the polymer were smaller than about 35.22 mJ/m2 generated by the nonpolar tocopherol moiety having long and bulky carbon groups. Good electro-optical characteristics, such as voltage holding ratio and residual DC voltage, and aligning stabilities at 200°C and ultraviolet irradiation of 10 J/cm2 were observed for the LC cells fabricated using PTOC100 as a LC alignment layer. Therefore, it was first found that the renewable tocopherol-based materials can produce an eco-friendly vertical LC alignment system.  相似文献   

10.
Nanoparticle dispersions in liquid crystalline materials at low concentrations allow both investigating the formation of defects in liquid crystal (LC) and enhancing the light-scattering properties of LC optical devices. Reverse mode LC dispersions are LC devices, which look like transparent in their OFF state, when no electric field is applied, and opaque in their ON state. In this paper, a new reverse mode device, formed by a dispersion of a LC mixture in a silica nanoparticle crosslinked network, is presented. The morphology and the electro-optical properties of these silica nanoparticle/LC composites were investigated for two different LC mixtures with a negative dielectric anisotropy. The observed transmittances and relaxation times were found to depend strongly on the silica amount and chemical–physical properties of LC used in the sample preparation.  相似文献   

11.
Acrylic polyethylene glycol(PEG)-based polymer-dispersed liquid crystal (PDLC) films have been fabricated to investigate the effect of intermolecular interactions on PDLC performance. For this purpose, the amphiphilic liquid crystal and polymers are selected as PDLC composite materials. The acrylic PEG contents are varied from 0 to 66.66 mol wt.% in order to understand the effects of different levels of additions on the microstructure and electro-optical properties of the PDLC films. For this intention, polarized optical microscopy and UV–vis spectroscopy are used. The extent of phase separation and anchoring energy are also examined using Fourier transform infrared (FTIR) spectroscopy and contact angle measurements in consequence of acrylic PEG addition. The contrast ratio, threshold voltage, as well as saturation voltage, tended to increase with the addition of acrylic PEG. The molecular affinity involved in the polymer matrix and LC molecules affected the phase separation which is responsible for the formation of domain size; this accordingly changed the electro-optical properties of PDLC film.  相似文献   

12.
Monodisperse poly(methyl methacrylate) (PMMA) particles containing various concentrations of stearyl methacrylate (SMA) were prepared, and a liquid crystal (LC) was swollen into the particles using a solute co-diffusion method (SCM). Phase separation behaviors between the polymer and LC were monitored by utilizing an optical and a polarized microscope (OM/POM). The monodisperse LC microcapsules were then applied to a polymer-dispersed liquid crystal (PDLC), and the electro-optical properties were investigated. As a result, the threshold and driving voltages were improved when the SMA content increased. The long alkyl chains of SMA in the capsules should exist at the interface of the LC and polymer resulting in an enhancement of phase separation between the polymer and LC, which largely influences the electro-optical properties of PDLC.  相似文献   

13.
The reflectivity control device, initially developed for attitude control, is utilised to control the solar sail orbit by switching the states between absorption and specular reflection. Actually, the major parts of the device are the polymer-dispersed liquid crystal (PDLC) films. Here, PDLC films based on polyimide (PI) as polymer matrix and a low molecular weight LC can be prepared by the thermally induced phase separation (TIPS) method. The influences of cooling rate and the content of LC on the size and uniformity of LC droplets dispersed in a polymer matrix by a TIPS process were investigated. It was found that a fast cooling rate gave smaller droplet sizes and hence a more uniform distribution as compared to the ones produced under a slow cooling rate. If the LC content was increased, the droplet size would be increased. Furthermore, the effect of LC droplet size on the electro-optical properties of the PI-based PDLC films was discussed, such as transmittance, threshold voltage, driving voltage and contrast ratio (CR).  相似文献   

14.
《Liquid crystals》2000,27(9):1189-1193
The electro-optical characteristics of the photo-aligned vertical-alignment liquid crystal display (VA-LCD) with a non-polarized UV exposure of 45° on homeotropic polyimide (PI) surface was investigated. The domain size of the photo-aligned VA-LCD increases proportionately with the UV exposure time. The LC alignment of the photo-aligned VA-LCD is attributed to photo-dissociation of the polymer by UV exposure on the homeotropic PI surface. Good voltage-transmittance characteristics of the photo-aligned VA-LCD without negative compensation film was measured. The response time of the photo-aligned VA-LCD was slow compared with a rubbing-aligned VA-LCD; this is considered to be due to the alignment of LC molecules.  相似文献   

15.
In this article, polymer network liquid crystal (PNLC) grating/Fresnel lens is fabricated by holography. The exposure light pattern for the grating is obtained by interfering two planar wave fronts, while the Fresnel pattern is achieved by interfering a planar wave front and a spherical wave front. Owing to the alignment effect and anchoring power of polymer network, the holographic PNLC grating achieves improved diffraction efficiency, and remarkably reduced operation voltage (reduced by 80%) compared with holographic polymer-dispersed-liquid-crystal and holographic polymer-stabilised blue-phase liquid-crystal gratings, while maintaining submillisecond response. Moreover, it achieves high spatial frequency with a 2-μm grating period, thanks to the holographic fabrication. The holographic PNLC Fresnel lens also exhibits attractive electro-optical properties.  相似文献   

16.
The cell gap dependence of the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture has been investigated. In this study, the morphology and electro-optical properties were analysed as a function of the thickness of the cells. The scanning electron microscopy indicates that the polymer networks become tighter with the decrease of cell gap. Increasing cell gap can improve the contrast ratio exponentially, while the threshold voltage increases linearly. The field-off response time increases, which is ascribed to the decreasing elastic force between the polymer network and the LC molecules.  相似文献   

17.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light-scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process, using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of an eutectic nematie mixture E7 and a polyester acrylate-based polymer precursor. The optical and electro-optical properties of the PDLC films obtained depend strongly on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by means of calorimetrie measurements.  相似文献   

18.
Switchable nematic emulsions are micron-sized droplets of nematic liquid crystal, floating in isotropic fluid matrices. Such droplets can be switched from an opaque (off) to a transparent (on) state by application of very low electric fields. It is known that the electro-optical properties of liquid crystal dispersions are affected by several parameters, including the liquid crystal loading. The electro-optical response of nematic emulsions has been investigated as a function of liquid crystal weight percentage. Almost transparent films with a reduced contrast ratio are obtained with lower liquid crystal contents. A macroscopic phase separation is observed when liquid crystal content exceeds 45 wt %. On the contrary, large contrast ratios and very low switching fields can be obtained if liquid crystal ranges from 25 to 35 wt %. Consequently, nematic emulsions prepared in this liquid crystal range can be used as promising systems for electro-optical applications. In addition to technological developments, these results can help computational and basic studies of phase separation in novel multiphase liquid crystalline materials.  相似文献   

19.
The anchoring properties of a film of anisotropically adsorbed liquid crystal (LC) molecules on a rigid substrate have been studied. The LC film was prepared by cooling it from the isotropic phase in the presence of a magnetic field parallel to the surface of the substrate. Relationship between the anchoring energy, easy axis direction and angular distribution of the adsorbed molecules, and changes in their angular distribution due to adsorption-desorption, were studied. The dependence of the anchoring energy on the duration and the temperature at which the LC film is annealed allowed an estimation of the activation energy of desorption of LC molecules on ITO surface, ΔE≈0.55 eV. The results suggest that hydrogen bonds are responsible for the adsorption of LC molecules on the substrate.  相似文献   

20.
Montmorillonite (MMT) clay modified with octadecylbenzyldimethylammonium chloride (OBDM), B2, and its composites with nematic liquid crystal (LC) 4-pentyl-4'-cyanobiphenyl (5CB), 5CB-B2, with different concentration of the clay (3-8 wt %) were investigated by X-ray diffraction, polarizing optical microscopy, differential scanning calorimetry, FTIR spectroscopy and atomic force microscopy. Modification of Na-MMT with OBDM surfactant results in an increase of the chemical affinity of the clay for 5CB. This results in considerable increase of the basal spacings of the clay, giving a possibility for 5CB dimers to penetrate into the interlayer space. Better affinity of the clay for LC allows clay nanoparticles to disperse homogeneously in the LC, and affects thermodynamic and optical properties of the nanocomposites. For 5CB-B2 composites, the structure formation and the strength of the interface interactions were practically independent on B2 concentration. A comparison with 5CB-B3 composites (B3 is MMT modified with dioctadecyldimethylammonium chloride) revealed that the ability of the clay to form homogeneous structures in the LC and thermodynamic and optical properties of the composites are highly dependent on the chemical nature of the surfactant. Varying the type of the clay mineral modifier, it is possible to develop novel heterogeneous LC nanocomposites with desirable electro-optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号