首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, we study the convergence analysis for the initial and boundary value problem of parabolic equations on a disk with singular solutions. It is assumed that the exact solution performs singular properties that its derivatives go to infinity at the boundary of the disk. We propose a fully implicit time-stepping numerical scheme. A stretching polynomial-like function with a parameter is used to construct a local grid refinement. Over the nonuniform partition, we combine the Swartztrauber-Sweet scheme and the backward Euler method in spatial and temporal discretization, respectively. We carry out convergence analysis and analyze the effects of the parameter. It is shown that our numerical scheme is of first order accuracy for temporal discretization and of almost second order accuracy for spatial discretization. Numerical experiments are performed to illustrate our analysis results and show that there exists an optimal value for the parameter to obtain a best approximate solution.  相似文献   

2.
In this paper we consider a singularly perturbed quasilinear boundary value problem depending on a parameter. The problem is discretized using a hybrid difference scheme on Shishkin-type meshes. We show that the scheme is second-order convergent, in the discrete maximum norm, independent of singular perturbation parameter. Numerical experiments support these theoretical results.  相似文献   

3.
This paper deals with a numerical method for solving one-dimensional unsteady Burgers–Huxley equation with the viscosity coefficient ε. The parameter ε takes any values from the half open interval (0, 1]. At small values of the parameter ε, an outflow boundary layer is produced in the neighborhood of right part of the lateral surface of the domain and the problem can be considered as a non-linear singularly perturbed problem with a singular perturbation parameter ε. Using singular perturbation analysis, asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular components. We construct a numerical scheme that comprises of implicit-Euler method to discretize in temporal direction on uniform mesh and a monotone hybrid finite difference operator to discretize the spatial variable with piecewise uniform Shishkin mesh. To obtain better accuracy, we use central finite difference scheme in the boundary layer region. Shishkin meshes are refined in the boundary layer region, therefore stability constraint is satisfied by proposed scheme. Quasilinearization process is used to tackle the non-linearity and it is shown that quasilinearization process converges quadratically. The method has been shown to be first order uniformly accurate in the temporal variable, and in the spatial direction it is first order parameter uniform convergent in the outside region of boundary layer, and almost second order parameter uniform convergent in the boundary layer region. Accuracy and uniform convergence of the proposed method is demonstrated by numerical examples and comparison of numerical results made with the other existing methods.  相似文献   

4.
A nonlocal difference scheme for the heat conduction equation with a real parameter γ > 1 or γ < 0 in the boundary condition is considered. Thus, the analysis of this problem is generalized to all real values of the parameter in the boundary condition. The spectrum of the spatial operator of the scheme is studied. The results obtained are used to formulate a stability criterion for the difference scheme. The case γ = ?1 proves to be special, because the system of eigenfunctions of the operator does not form a basis in the space of grid functions.  相似文献   

5.
We present a finite difference scheme for a class of linear singularly perturbed boundary value problems with two small parameters. The problem is discretized using a Bakhvalov-type mesh. It is proved under certain conditions that this scheme is fourth-order accurate and that its error does not increase when the perturbation parameter tends to zero. Numerical examples are presented which demonstrate computationally the fourth order of the method.  相似文献   

6.
本文讨论带小参数的反应—扩散方程组的数值方法.由于边界层效应,使得这类问题的数值求解十分困难.我们根据奇异摄动理论和Green函数方法建立起一种适合求解这类问题的差分格式.在文中,我们引入了可行等距度α,并证明了若a≥2则格式在l1(m)意义下一致收敛且收敛阶为O(h+△t).  相似文献   

7.
We consider a model time-dependent convection-diffusion problem, whose solution may exhibit interior and boundary layers. The standard streamline diffusion scheme, with piecewise linear elements on a uniform mesh, will converge only at points that are not close to any layer. We replace the uniform mesh by a special piecewise uniform mesh that is chosen a priori and resolves part of any outflow boundary layer. The resulting method is convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 away from layers and almost order 3/4 inside the boundary layer.  相似文献   

8.
二维非线性椭圆型奇异摄动边值问题差分格式   总被引:1,自引:0,他引:1  
刘国庆 《计算数学》1996,18(2):149-154
二维非线性椭圆型奇异摄动边值问题差分格式刘国庆(南京化工学院)DIFFERENCESCHEMEFORTWO-DIMENSIONNONLINEARELLIPTICSINGULARLYPERTURBEDBOUNDARYVALUEPROBLEM¥LiuGu...  相似文献   

9.
In this paper, a fitted Numerov method is constructed for a class of singularly perturbed one-dimensional parabolic partial differential equations with a small negative shift in the temporal variable. Similar boundary value problems are associated with a furnace used to process a metal sheet in control theory. Here, the study focuses on the effect of shift on the boundary layer behavior of the solution via finite difference approach. When the shift parameter is smaller than the perturbation parameter, the shifted term is expanded in Taylor series and an exponentially fitted tridiagonal finite difference scheme is developed. The proposed finite difference scheme is unconditionally stable. When the shift parameter is larger than the perturbation parameter, a special type of mesh is used for the temporal variable so that the shift lies on the nodal points and an exponentially fitted scheme is developed. This scheme is also unconditionally stable. The applicability of the proposed methods is demonstrated by means of two examples.  相似文献   

10.
研究了具有非局部边界的奇异摄动问题。对于正的小摄动参数,其解显示出边界层特性。为了求解该问题,构造了非等距网格上的指数型有限差分。还给出了小参数时的一致收敛性分析,同时给出了一个数值例子。  相似文献   

11.
双曲-抛物型偏微分方程奇摄动混合问题的数值解法   总被引:1,自引:0,他引:1  
构造了二阶双曲—抛物型方程奇摄动混合问题的差分格式,给出了差分解的能量不等式,并证明了差分解在离散范数下关于小参数一致收敛于摄动问题的解。  相似文献   

12.
We consider the quasi-linear problem of nonequilibrium sorption dynamics with external-diffusion kinetics and a boundary condition that contains the time derivative of a solution component. A numerical method is proposed for describing the inverse problem to recover the nonlinear parameter of the system of differential equations—the inverse of the sorption isotherm. Convergence of the difference scheme for the direct problem is proved. Numerical solutions of both the direct and the inverse problem are obtained for various parameter values.  相似文献   

13.
In this paper we propose a new modified recursion scheme for the resolution of multi-order and multi-point boundary value problems for nonlinear ordinary and partial differential equations by the Adomian decomposition method (ADM). Our new approach, including Duan’s convergence parameter, provides a significant computational advantage by allowing for the acceleration of convergence and expansion of the interval of convergence during calculations of the solution components for nonlinear boundary value problems, in particular for such cases when one of the boundary points lies outside the interval of convergence of the usual decomposition series. We utilize the boundary conditions to derive an integral equation before establishing the recursion scheme for the solution components. Thus we can derive a modified recursion scheme without any undetermined coefficients when computing successive solution components, whereas several prior recursion schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic equations for the undetermined coefficients fraught with multiple roots, which is required to complete calculation of the solution by several prior modified recursion schemes using the ADM.  相似文献   

14.
We propose a spectral collocation method for the numerical solution of the time‐dependent Schrödinger equation, where the newly developed nonpolynomial functions in a previous study are used as basis functions. Equipped with the new basis functions, various boundary conditions can be imposed exactly. The preferable semi‐implicit time marching schemes are employed for temporal discretization. Moreover, the new basis functions build in a free parameter λ intrinsically, which can be chosen properly so that the semi‐implicit scheme collapses to an explicit scheme. The method is further applied to linear Schrödinger equation set in unbounded domain. The transparent boundary conditions are constructed for time semidiscrete scheme of the linear Schrödinger equation. We employ spectral collocation method using the new basis functions for the spatial discretization, which allows for the exact imposition of the transparent boundary conditions. Comprehensive numerical tests both in bounded and unbounded domain are performed to demonstrate the attractive features of the proposed method.  相似文献   

15.
We study the problem on the eigenvibrations of a bar with an elastically attached load. The problem is reduced to finding the eigenvalues and eigenfunctions of an ordinary secondorder differential problem with a spectral parameter nonlinearly occurring in the boundary condition at the load attachment point. We prove the existence of countably many simple positive eigenvalues of the differential problem. The problem is approximated by a grid scheme of the finite element method. We study the convergence and accuracy of the approximate solutions.  相似文献   

16.
17.
We consider a difference scheme for the heat equation with nonlocal boundary conditions containing a complex parameter γ. We single out stability domains in the complex γ-plane and derive a criterion for stability with respect to the initial data in the form of a condition on γ and the grid increments.  相似文献   

18.
In this series of three papers we study singularly perturbed (SP) boundary value problems for equations of elliptic and parabolic type. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids, we can construct difference schemes that allow approximation of the solution and the normalised diffusive flux uniformly with respect to the small parameter. We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges $ε$-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed. In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type; (iii) Problems for SP parabolic equation with discontinuous boundary conditions.  相似文献   

19.
l)ThisworkwassupportedbyNWOthroughgrantIBo7-3Go12.BOUNDAarv^LUEPRoBLEMFORELLIPTICEQUMIONwiTHMIXEDBOUNDAavCONDITION1.IntroductionInthispedwesketchavarietyofspecialmethodswhichareusedforconstructinge-unifornilyconvergelltschemes-WeshaJldemonstrateamethodwhichachieveshaprovedaccuracyforsolvingsingularlyperturbedb0undaryvalueproblemforeiliPicequatiouswithparabolicboundarylayers-InSecti0n4weshallintroduceanaturalclass,B,oftritefferenceschemes,inwhich(bytheabovementi0nedaP…  相似文献   

20.
1.IntroductionThesolution0fpartialdifferentiaJequationsthataresingularlyperturbedand/orhavediscontinu0usboundaryconditionsgenerallyhave0nlylimitedsmoothness.DuetothisfaCtdndcultiesaPpearwhenwesolvethesepr0blemsbynumericalmethods.Forexampleforregularparab0licequationswithdiscontinuousboundaryconditions,classicalmethods(FDMorFEM)onregularrectangulargridsd0n0tconvergeintheIoo-normonadomainthatincludesaneighbourhood0fthediscontinulty[8,9,4].Iftheparametermultiplyingthehighest-orderderivativeva…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号