首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research progress in cation-π interactions   总被引:2,自引:0,他引:2  
Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.  相似文献   

2.
Stabilization of the reaction intermediate eudesmane cation (3) through interaction with Trp 334 during catalysis by aristolochene synthase from Penicillium roqueforti was investigated by site-directed incorporation of proteinogenic and non-canonical aromatic amino acids. The amount of germacrene A (2) generated by the mutant enzymes served as a measure of the stabilization of 3. 2 is a neutral intermediate, from which 3 is formed during PR-AS catalysis by protonation of the C6,C7 double bond. The replacement of Trp 334 with para-substituted phenylalanines of increasing electron-withdrawing properties led to a progressive accumulation of 2 that showed a good correlation with the interaction energies of simple cations such as Na(+) with substituted benzenes. These results provide compelling evidence for the stabilizing role played by Trp 334 in aristolochene synthase catalysis for the energetically demanding transformation of 2 to 3.  相似文献   

3.
Cation-π interactions have been widely exploited and utilised in the structural biology arena, their fundamental importance in supramolecular chemistry and the pivotal role they play in host guest chemistry has rapidly expanded. In terms of organic synthesis π-π, CH-π and cation-π interactions are often invoked providing hypotheses for observed selectivities and reaction outcomes although fundamental studies of these interactions are less well reported, especially in the organic synthesis arena. This article considers cation-π interactions in the field of asymmetric organocatalysis and provides a summary of cases where such interactions may play an important role. Importantly this article sets out to highlight where such interactions could be operating in order to highlight the potential wealth of investigations to be had in this area rather than categorically claiming such interactions are in operation. For asymmetric catalysis this is particularly important as the geometry of a transition state dictates the stereochemical outcome of the reaction, this article provides a perspective on such phenomena.  相似文献   

4.
Brothers and enemies: Anion-π and cation-π interactions act in a synergistic way when gathered in the molecular cavity of a hemicryptophane host, affording an efficient contribution (-170?kJ?mol(-1)) in zwitterion recognition. NMR titration experiments and calculations reveal the positioning of the guest in the cavity of the heteroditopic receptor. This study emphasizes the importance of anion-π bonds in host-guest chemistry.  相似文献   

5.
Cation-π interaction is comparable and as important as other main molecular interaction types, such as hydrogen bond, electrostatic interaction, van der Waals interaction, and hydrophobic interaction. Cation-π interactions frequently occur in protein structures, because six (Phe, Tyr, Trp, Arg, Lys, and His) of 20 natural amino acids and all metallic cations could be involved in cation-π interaction. Cation-π interactions arise from complex physicochemical nature and possess unique interaction behaviors, which cannot be modeled and evaluated by existing empirical equations and force field parameters that are widely used in the molecular dynamics. In this study, the authors present an empirical approach for cation-π interaction energy calculations in protein interactions. The accurate cation-π interaction energies of aromatic amino acids (Phe, Tyr, and Try) with protonated amino acids (Arg and Lys) and metallic cations (Li(+), Na(+), K(+), and Ca(2+)) are calculated using B3LYP/6-311+G(d,p) method as the benchmark for the empirical formulization and parameterization. Then, the empirical equations are built and the parameters are optimized based on the benchmark calculations. The cation-π interactions are distance and orientation dependent. Correspondingly, the empirical equations of cation-π interactions are functions of two variables, the distance r and the orientation angle θ. Two types of empirical equations of cation-π interactions are proposed. One is a modified distance and orientation dependent Lennard-Jones equation. The second is a polynomial function of two variables r and θ. The amino acid-based empirical equations and parameters provide simple and useful tools for evaluations of cation-π interaction energies in protein interactions.  相似文献   

6.
Although cation-π interactions commonly involve aromatic or heteroaromatic rings as the source of π-electrons, isolated and nonconjugated olefins are equally effective donors of π-electron density. Previous comparisons of these π-electron sources have indicated that the net energy of the binding interactions is not a simple additive function of the number of π-bonds involved. For instance, the enthalpy of binding (ΔH°) of Li(+), Na(+), or K(+) cations to two ethylene molecules or to one benzene molecule is approximately the same, despite the 4:6 ratio of π-electrons involved. This present density functional theory study indicates that geometric factors can partially account for the proportionally greater interaction energies of olefins, but whether they are symmetrically placed around the cation or grouped on one hemisphere has little effect on the binding energy. Instead, flexible ligands that permit olefinic π-electrons to be oriented more favorably toward the metal than those in rigid aromatic rings can be correlated with greater bonding. For Li(+) complexes, this appears to be an appreciable factor, although it is less significant with Na(+) and K(+) complexes. For all three cations, stronger polarization interactions with olefins compared to arenes contribute to the strength of cation-π interactions involving olefinic π-bonds.  相似文献   

7.
Two significantly different conformations were observed in crystal of 1, which form an unsymmetrical molecular dimer governed by cation-π interactions between a pyridinium cation and a phenyl ring, whereas compound 2 forms a head-to-tail type of dimer.  相似文献   

8.
Yamada S  Kawamura C 《Organic letters》2012,14(6):1572-1575
Regio- and stereoselective [4 + 4] photodimerization reactions of 1- and 2-azaanthracenes were performed in both methanol solution and solid phases to give anti-HT dimers in high yields. In these reactions, intermolecular cation-π interactions between the pyridinium cation and the benzene ring play a key role in preorientation prior to the photodimerization reactions.  相似文献   

9.
A molecular electrostatic potential (MESP) topography based approach has been proposed to quantify the substituent effects on cation-π interactions in complexes of mono-, di-, tri-, and hexasubstituted benzenes with Li(+), Na(+), K(+), and NH(4)(+). The MESP minimum (V(min)) on the π-region of C(6)H(5)X showed strong linear dependency to the cation-π interaction energy, E(M(+)). Further, cation-π distance correlated well with V(min)-π distance. The difference between V(min) of C(6)H(5)X and C(6)H(6) (ΔV(min)) is proposed as a good parameter to quantify the substituent effect on cation-π interaction. Compared to benzene, electron-donating groups stabilize the di-, tri-, and hexasubstituted cation-π complexes while electron-withdrawing groups destabilize them. In multiple substituted complexes, E(M(+)) is almost equal (~95%) to the sum of the individual substituent contributions (E(M(+)) ≈ Σ(ΔE(M(+)))), suggesting that substituent effect on cation-π interactions is largely additive. The ΔV(min) of C(6)H(5)X systems and additivity feature have been used to make predictions on the interaction energies of 80 multiple substituted cation-π complexes with above 97% accuracy. The average mean absolute deviation of the V(min)-predicted interaction energy, E(M(+))(V) from the calculated E(M(+)) is -0.18 kcal/mol for Li(+), -0.09 kcal/mol for Na(+), -0.43 kcal/mol for K(+), and -0.67 kcal/mol for NH(4)(+), which emphasize the predictive power of V(min) as well as the additive feature of the substituent effect.  相似文献   

10.
A new class of heterogeneous catalytic systems utilizing cation-guest interactions was designed based on microporous titanosilicate molecular sieves. Introducing heavier alkali metal cations on ion-exchange sites of the framework resulted in a significant enhancement of the catalytic activity for oxidation of cyclohexene and styrene, whereas such an enhancement was not observed in oxidation of cyclohexane without π systems. Distinct relationships between the catalytic activities and intermolecular interaction energies which were determined by IR spectroscopic and computational approaches clearly evidenced the predominance of the cation-π interaction in this catalytic system.  相似文献   

11.
U.Deva Priyakumar 《Tetrahedron》2004,60(13):3037-3043
Density functional theory (B3LYP) calculations with double and triple-ζ quality basis sets were performed on the Li+ and Na+ π-complexes of corannulene 2, sumanene 3CH2, heterosumanenes 3X, triphenylene 4 and heterotrindenes 5X. The metal ions bind to both convex and concave faces of buckybowls, with a consistent preference to bind to the convex surface by about 1-4 kcal/mol. The metal ion complexation with the π-framework of the central six-membered ring span wider range compared to benzene, indicating the control of size, curvature and electronic perturbations over the strength of cation-π interactions. Computations show that the bowl-to-bowl inversion barriers are only slightly altered upon metal complexation, indicating the continuity of bowl-to-bowl inversion despite metal complexation. We have calculated the binding energies of model systems, triphenylene (4) and heterotrindenes (5X), which indicate that the interaction energies are controlled by electronic factors. While the inversion barrier is dependent mainly on the size of the heteroatom, the extent of binding is independent of the size of the atom or the bowl depth.  相似文献   

12.
Substituent effects on cation-π interactions have been quantified using a variety of Φ-X···M(+) complexes where Φ, X, and M(+) are the π-system, substituent, and cation, respectively. The cation-π interaction energy, E(M(+)), showed a strong linear correlation with the molecular electrostatic potential (MESP) based measure of the substituent effect, ΔV(min) (the difference between the MESP minimum (V(min)) on the π-region of a substituted system and the corresponding unsubstituted system). This linear relationship is E(M(+)) = C(M(+))(ΔV(min)) + E(M(+))' where C(M(+)) is the reaction constant and E(M(+))' is the cation-π interaction energy of the unsubstituted complex. This relationship is similar to the Hammett equation and its first term yields the substituent contribution of the cation-π interaction energy. Further, a linear correlation between C(M(+))() and E(M(+))()' has been established, which facilitates the prediction of C(M(+)) for unknown cations. Thus, a prediction of E(M(+)) for any Φ-X···M(+) complex is achieved by knowing the values of E(M(+))' and ΔV(min). The generality of the equation is tested for a variety of cations (Li(+), Na(+), K(+), Mg(+), BeCl(+), MgCl(+), CaCl(+), TiCl(3)(+), CrCl(2)(+), NiCl(+), Cu(+), ZnCl(+), NH(4)(+), CH(3)NH(3)(+), N(CH(3))(4)(+), C(NH(2))(3)(+)), substituents (N(CH(3))(2), NH(2), OCH(3), CH(3), OH, H, SCH(3), SH, CCH, F, Cl, COOH, CHO, CF(3), CN, NO(2)), and a large number of π-systems. The tested systems also include multiple substituted π-systems, viz. ethylene, acetylene, hexa-1,3,5-triene, benzene, naphthalene, indole, pyrrole, phenylalanine, tryptophan, tyrosine, azulene, pyrene, [6]-cyclacene, and corannulene and found that E(M)(+) follows the additivity of substituent effects. Further, the substituent effects on cationic sandwich complexes of the type C(6)H(6)···M(+)···C(6)H(5)X have been assessed and found that E(M(+)) can be predicted with 97.7% accuracy using the values of E(M(+))' and ΔV(min). All the Φ-X···M(+) systems showed good agreement between the calculated and predicted E(M(+))() values, suggesting that the ΔV(min) approach to substituent effect is accurate and useful for predicting the interactive behavior of substituted π-systems with cations.  相似文献   

13.
CH-π stacks up! Using the protein α(2) D as a model system, we estimate that a CH-π contact between cyclohexylalanine (Cha) and phenylalanine (F) contributes approximately -0.7?kcal mol(-1) to the protein stability. The stacking F-Cha pairs are sequestered in the core of the protein, where water interference does not exist (see figure). Therefore, the observed energetic gain should represent the inherent magnitude and upper limit of the CH-π interactions.  相似文献   

14.
The quantification of inductive (I), resonance (R), and through-space (TS) effects of a variety of substituents (X) in cation-π interactions of the type C?H?X···Na? is achieved by modeling C?H?-(Φ?)(n)-X···Na? (1), C?H?-(Φ?)(n)-X···Na? (2), C?H?-(Φ(2perpendicular))(n)-X···Na? (2'), and C?H? ···HX···Na? (3), where Φ? = -CH?CH?-, Φ? = -CHCH-, Φ(2perpendicular) indicates that Φ? is perpendicular to the plane of C?H?, and n = 1-5. The cation-π interaction energies of 1, 2, 2', and 3, relative to X = H and fitted to polynomial equations in n have been used to extract the substituent effect E?1, E?2, E?(2'), and E?3 for n = 0, the C?H?X···Na? systems. E?1 is made up of inductive (E(I)) and through-space (E(TS)) effects while the difference (E?2 - E?(2')) is purely resonance (E(R)) and E?3 is attributed to the TS contribution (E(TS)) of the X. The total interaction energy of C?H?X···Na? is nearly equal to the sum of E(I), E(R), and E(TS), which brings out the unified view of cation-π interaction in terms of I, R, and TS effects. The electron-withdrawing substituents contribute largely by TS effect, whereas the electron-donating substituents contribute mainly by resonance effect to the total cation-π interaction energy.  相似文献   

15.
Intramolecular metal-ligand OH/π (MLOH/π) and metal-ligand NH/π (MLNH/π) interactions in transition metal complexes between aqua or ammine ligand and ligand containing a C6-aromatic ring were investigated in crystal structures deposited in the Cambridge Structural Database (CSD). These intramolecular interactions appear in 38 structures with aqua ligand as the hydrogen atom donor and in 10 structures with ammine ligand as the hydrogen atom donor. Among all these complexes only one is negatively charged, 14 are positively charged and 33 are neutral indicating that the overall charge of the molecule has an influence on the XH/π (X = O or N) interactions. Energy estimated by DFT calculations is approximately 19 kJ mol−1 for the MLOH/π interactions and approximately 15 kJ mol−1 for the MLNH/π interactions. Dedicated to Professor Milan Melník on the occasion of his 70th birthday  相似文献   

16.
A novel strategy for highly efficient utilization of chiral ammonium salt catalysts has been described in this paper. Three kinds of catalytic functions including iminium catalysis, enamine catalysis, and acid catalysis of chiral ammonium salt catalysts, have been achieved in the enantioselective reduction and alkylation reaction of α,β-unsaturated aldehydes with alcohols.  相似文献   

17.
The directionality of two important noncovalent interactions involving aromatic rings (namely anion-π and cation-π) is investigated. It has been recently published that the anion-π interactions observed in X-ray structures where the anion is located exactly over the center of the ring are scarce compared to cation-π interactions. To explain this behavior, we have analyzed how the interaction energy (RI-MP2/aug-cc-pVDZ level of theory) is affected by moving the anion from the center of the ring to several directions in anion-π complexes of chloride with either hexafluorobenzene or trifluoro-s-triazine. We have compared the results with the directionality of the cation-π interaction in the sodium-benzene complex. The results are useful to explain the experimental differences between both ion-π interactions. We have also computed the van der Waals radii of several halide anions and we have compared them to the neutral halogen atoms.  相似文献   

18.
MP2/6-31+G* calculations were performed on the cation- complexes of ethylene, cyclobutadiene and benzene with a number of atomic cations. It was found that except B+ all the atomic cations form -type cation- complexes with ethylene. On the other hand, with cyclobutadiene Li+, N+, Na+, P+ and K+ form -type complexes, whereas H+, F+, and Cl+ form covalent -type complexes. With benzene Li+, B+, Na+, Al+, and K+ form -type complexes whereas H+, F+, and Cl+ form -type complexes. It was concluded that the driving force to form the -type complex is chemical bonding, and that for metal cations to form -type complexes is non-covalent interaction.  相似文献   

19.
Contacts between aromatic surfaces and saccharide CH groups are common motifs in natural carbohydrate recognition. These CH-π interactions are modeled in "synthetic lectins" which employ oligophenyl units as apolar surfaces. Here we report the synthesis and study of new synthetic lectins with fluoro- and hydroxy-substituted biphenyl units, designed to explore the role of π-electron density in carbohydrate CH-π interactions. We find evidence that recognition can be moderated through electronic effects but that other factors such as cavity hydration are also important and sometimes predominant in determining binding strengths.  相似文献   

20.
Journal of Radioanalytical and Nuclear Chemistry - A novel indole-based aerogel (HTPRA) containing carboxyl groups was prepared for separation of uranium from aqueous solution. The adsorption was...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号