首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)].1.5TCNQ.xCH(2)Cl(2) [Q(+) = PPN(+), R = H, x = 0 (11a); Q(+) = PPN(+), R = t-Bu, x = 2 (11b); Q(+) = Bu(4)N(+), R = OC(8)H(17), x = 0 (11c)] were obtained from Q6a-c and TCNQ (1:2). The crystal structures of 5c.THF, 5e.(2)/(3)CH(2)Cl(2), 5g.CH(2)Cl(2), (PPN)6a.2Me(2)CO, and 11b were solved by X-ray diffraction studies. All the gold(I) complexes here described are photoluminescent at 77 K, and their emissions can be generally ascribed to LMMCT (Q(2)4a,c, 5a-h, 10) or LMCT (9) excited states.  相似文献   

2.
Photochemical reaction of [Rh(eta-C(5)H(5))(C(2)H(4))(2)] (5) with alkenyl benzene derivatives PhC(R(1))=CHR(2) results in the formation of four types of cyclopentadienylrhodium complexes: the mononuclear ethylene eta(2)-alkenylbenzene complexes [Rh(eta-C(5)H(5))(eta-C(2)H(4))(eta(2)-PhC(R(1))=CHR(2))] 9 a (R(1)=H, R(2)=Ph), 9 b (R(1)=Ph, R(2)=H), 9 c (R(1)=CH(3), R(2)=H), the mononuclear eta(4)-alkenylbenzene complex [Rh(eta-C(5)H(5))[beta,alpha,1,2-eta-C(6)H(5)C(Ph)=CH(2)]] (10), the dinuclear mu-eta(4):eta(4)-alkenylbenzene complex [anti-[Rh(eta-C(5)H(5))](2)[mu-beta,alpha,1,2-eta:3,4,5,6-eta-C(6)H(5)C(Ph)C=CH(2)]] (11), and the dinuclear rhodaindenyl complexes [Rh(eta-C(5)H(5))[1-3,8,9-eta-[1-(eta-C(5)H(5))]-3-R(1)-1-rhodaindenyl]] 12 a (R(1)=Ph), 12 b (R(1)=CH(3)). Reaction of 5 with triisopropenylbenzene gives the dinuclear complex [[Rh(eta-C(5)H(5))](2)(mu-beta,alpha,1,2-eta:beta',alpha',4,3-eta-C(6)H(3)[C(CH(3))=CH(2)](3))] (13). In the complexes 9, only the olefinic side chain of the alkenylbenzene binds to the metal. In the complexes 10, 11, 12, and 13, an arene nucleus coordinates to rhodium as a 1,3-diene moiety (or part thereof). The rhodaindenyl complexes 12 result from C-H activation of the alkenylbenzene at the beta and ortho positions. The crystal and molecular structures of 9 a, 9 b, 10, 11, and 12 a, b were determined. The role of 9-11 and 13 as models for intermediates during alkenylbenzene-assisted self-assembly of tricobalt clusters is discussed.  相似文献   

3.
N-(1-Cycloalkenyl)pyrroles 3a,b, -pyrazoles 6a,b, and -imidazoles 9a,b were synthesized via elimination of benzotriazole or 5-phenyltetrazole from the corresponding 1-[1-(heterocycyl)cycloalkyl]benzotriazoles 2, 5, and 8 or 1-[1-(heterocycyl)cyclohexyl]-5-phenyltetrazole (12 and 14). Intermediates 2, 5, 8, 12 and 14 were obtained by cyclizations of dihaloalkanes with N-(benzotriazol-1-ylmethyl)heterocycles, 1-imidazol-1-ylmethyl-5-phenyltetrazole (11), or 1-pyrazol-1-ylmethyl-5-phenyltetrazole (13) in the presence of n-BuLi.  相似文献   

4.
Bicyclic azoles, 2-methyl-5-(imidazol-1-yl)-2H-tetrazole (1), 2-methyl-5-(1,2,4-triazol-1-yl)-2H-tetrazole (4), 1-methyl-5-(imidazol-1-yl)-1H-tetrazole (7), 1-methyl-5-(1,2,4-triazol-1-yl)-1H-tetrazole (10), 1-methyl-4-nitro-2-(imidazol-1-yl)-1H-imidazole (13), and 1-methyl-4-nitro-2-(1,2,4-triazol-1-yl)-1H-imidazole (16) were prepared. Their thermally stable azolium salts, 3, 6, 9, 12, 15, and 18-21, with densities ranging between 1.519-1.674 g cm-3, were synthesized by quaternization with nitric or perchloric acid or with iodomethane followed by metathesis reactions with silver nitrate and silver perchlorate. The structures of 12 b and 21 b were confirmed by single-crystal X-ray analysis. The standard enthalpies of formation for some of the new salts were calculated by using the computationally feasible DFT(B3LYP) and MP2 methods in conjunction with an empirical approach based on densities of salts. The calculated values range from DeltaHdegreef=209.9 (21 a) to 412.3 (12 b) kJ mol-1 in which the experimental densities are >1.515 g cm-3.  相似文献   

5.
The convenient preparation of 6-fomylpyrimidinedione derivatives and 2- and 3-formylpyridine are described. Thus, 5-bromo-1,3-dimethyl- ( 1a ), 5-bromo-3-methyl-1-(2-nitrooxyethyl)- ( 1b ), and 5-bromo-3-methyl-1-(3-nitrooxypropyl)-2,4(1H,3H)-pyrimidine-dione ( 1c ) were converted to the corresponding 6-formyl compounds 2a, 2b , and 2c , respectively, in excellent yields by the reaction with triethylamine and 1,4-diazabicyclo[2.2.2]octane. These 6-formylpyrimidinedione derivatives are key intermediates for the preparation of 6-carbon-carbon substituted compounds, which are expected to be potential antitumor and antiviral agents. Similarly, 2-(and 3-)formylpyridine ( 9a (and 9b )) were obtained by the reaction of 2-(and 3)nitrooxymethylpyridine ( 8a (and 8b )) with 1,4-diazabicyclo[2.2.2]octane.  相似文献   

6.
The [4 + 2] cycloadditions of 3-nitrocoumarin (1a), 6-chloro-3-nitrocoumarin (1b), and 6-, 7-, and 8-hydroxy-3-nitrocoumarins (1c, 5, and 6) with (E)-piperylene (7), isoprene (8), 2,3-dimethyl-1,3-butadiene (9), 2-methoxy-1,3-butadiene (10), 2,3-dimethoxy-1,3-butadiene (11), and cyclopentadiene (12) were investigated in aqueous medium, in organic solvent and under solventless conditions. The reactions performed in water occurred in heterogeneous phase but were faster than those executed in toluene or dichloroethane (DCE). 1a-c, 5, and 6 behaved as 2pi components in the Diels-Alder cycloadditions with 7-10 and 12, and exo adducts were preferentially or exclusively produced. Surprisingly 1a, behaved as a 4pi component in the cycloaddition in water with 11 and 4-substituted 3-nitrochromanones 20 and 21 were isolated. The cycloadditions of hydroxy-3-nitrocoumarins 1c, 5, and 6 with 1,3-diene 9 did not work in water or in organic solvent, but did work under solventless conditions. Nitrotetrahydrobenzo[c]chromenones 13-16, 24, and 25, originating from the normal electron-demand Diels-Alder reactions, were converted into dihydrodibenzo[b,d]furans 27-31 in water, via one-pot Nef-cyclodehydration reactions.  相似文献   

7.
Metalladichalcogenolate cluster complexes [Cp'Co{E(2)C(2)(B(10)H(10))}]{Co2(CO)5} [Cp' = eta5-C5H5, E = S(3a), E = Se(3b); Cp' = eta5-C5(CH3)5, E = S(4a), E = Se(4b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Mo(CO)2] [E = S(5a), Se(5b)], Cp*Co(micro2-CO)Mo(CO)(py)2[E(2)C(2)(B(10)H(10))] [E = S(6a), Se(6b)], Cp*Co[E(2)C(2)(B(10)H(10))]Mo(CO)2[E(2)C(2)(B(10)H(10))] [E = S(7a), Se(7b)], (Cp'Co[E(2)C(2)(B(10)H(10))]W(CO)2 [E(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(8a), E = Se(8b); Cp' = eta5-C5(CH3)5, E = S(9a), E = Se(9b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Ni [E = S(10a), Se(10b)] and 3,4-(PhCN(4)S)-3,1,2-[PhCN(4)SCo(Cp)S(2)]-3,1,2-CoC(2)B(9)H(8) 12 were synthesized by the reaction of [Cp'CoE(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(1a), E = Se(1b); Cp' = eta5-C5(CH3)5, E = S(2a), E = Se(2b)] with Co2(CO)8, M(CO)3(py)3 (M = Mo, W), Ni(COD)2, [Rh(COD)Cl]2, and LiSCN4Ph respectively. Their spectrum analyses and crystal structures were investigated. In this series of multinuclear complexes, 3a,b and 4a,b contain a closed Co3 triangular geometry, while in complexes 5a-7b three different structures were obtained, the tungsten-cobalt mixed-metal complexes have only the binuclear structure, and the nickel-cobalt complexes were obtained in the trinuclear form. A novel structure was found in metallacarborane complex 12, with a B-S bond formed at the B(7) site. The molecular structures of 4a, 5a, 6a, 7b, 9a, 9b, 10a and 12 have been determined by X-ray crystallography.  相似文献   

8.
2′-Deoxyribofuranosyl and arabinofuranosyl nucleosides of certain purine-6-sulfenamides, sulfinamides and sulfonamides have been prepared by sequential amination and controlled oxidation of the corresponding 6-thiopurine nucleosides, and evaluated for antiviral and antitumor activities in mice. Amination of 2′-deoxy-6-thioinosine ( 4a ) and 9-β-D-arabinofuranosyl-6-thiopurine ( 4c ) with chloramine solution gave the corresponding 6-sulfenamides 5a and 5c , respectively, which on selective oxidation with 3-chloroperoxybenzoic acid (MCPBA) gave diastereomeric 9-(2-deoxy-β-D-erythro-pentofuranosyl)purine-6-sulfinamide ( 6a ) and 9-β-D-arabinofuranosylpurine-6-sulfinamide ( 6c ), respectively. However, oxidation of 5a and 5c with excess of MCPBA gave the corresponding 6-sulfonamide derivatives 7a and 7c , respectively. Similar amination of 2′-deoxy-6-thioguanosine ( 4b ), ara-6-thioguanine ( 4d ) and α-2′-deoxy-6-thioguanosine ( 8 ) gave the respective 6-sulfenamide derivatives 5b, 5d and 9 . Controlled oxidation of 5b, 5d and 9 gave (R,S)-2-amino-9-(2-deoxy-β-D-erythro-pentofuranosyl)purine-6-sulfinamide ( 6b ), (R,S)-2-amino-9-β-D-arabinofuranosylpurine-6-sulfinamide ( 6d ) and the α-anomer of ( 6b) (10 ), respectively. The diastereomeric mixture of (R,S )-10 was partially resolved and the structure of S -10 was assigned by single-crystal X-ray diffraction analysis. Oxidation of 5b, 5d and 9 with excess of MCPBA afforded the respective 6-sulfonamide derivatives 7b, 7d and 11 . Nucleosides 5c and 7c were significantly active against Friend leukemia virus in mice, whereas 6c was somewhat less active. Of the 20 nucleosides evaluated, 12 exhibited biologically significant anti-L1210 activity in mice. Nucleosides 6b and 7a at 173 mg/kg/day × 1 showed a T/C of 153, whereas 7d at 800 mg/kg/day × 1 showed a T/C of 153 against L1210 leukemia. The α-nucleoside 9 at 480 mg/kg/day × 1 gave a T/C of 172. A single treatment with 6b, 7a, 7d and 9 reduced the body burdens of viable L1210 cells by more than 99.2%. The antileukemic activity of these novel nucleosides tended to parallel solubility.  相似文献   

9.
Two new alkaloids, 9-methoxy-18,19-dehydrocamptothecin (1) and 5- hydroxymappicine-20-O-beta-glucopyranoside (2a/2b as a racemic mixture), together with nine known compounds: camptothecin (3), 9-methoxy-camptothecin (4), 5-hydroxycamptothecin (5a/5b racemic mixture), 5-hydroxy-9-methoxycamptothecin (6a/6b racemic mixture), diosmetin (7), apigenin (8), apigenin-7-O-glucopyranoside (9), rosin (cinnamyl-O-beta-D-glucopyranoside) (10) and amarantholidoside IV (11) were isolated from the immature seeds of Nothapodytes foetida (Wight) Sleumer. The structures were elucidated by spectroscopic analyses. In the present research, compounds 1, 3, 4, 5a/5b and 6a/6b, also showed in vitro cytotoxicity against six cancer cell lines (HepG2, Hep3B, MDA-MB- 231, MCF-7, A549, and Ca9-22). Among them, compound 1 exhibited significant cytotoxicity against these cancer cell lines, with IC(50) of 0.24-6.57 microM. Furthermore, HPLC profiles were developed for qualitative and quantitative analysis of these active constituents in different parts of this plant, including mature and immature seeds, leaves, stems and roots. The results revealed that compounds 3 and 4 have the highest concentrations, which are found in the roots part of the plant.  相似文献   

10.
Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower than those of analogous platinum complexes with previously described 1,1-ethylenedithiolato ligands and in most cases compare well to those of 1,2-dithiolene complexes.  相似文献   

11.
Convenient preparation of novel tropylium ions annulated with two 2,4-dimethylfuro[2,3-d]pyrimidine-1(2H),3(4H)-diones, 12a(+).BF(4)(-) and 12b(+)().BF(4)(-), consists of a reaction of 2-methoxytropone with dimethylbarbituric acid to give 7,9-dimethyl-3-[1',3'-dimethyl-2'(1'H),4'(3'H),6'(5'H)-trioxopyrimidin-5'-ylidene]cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dione 8 and the following oxidative cyclization by using DDQ or photoirradiation under aerobic conditions. On the basis of the MO calculations, the selectivity of two types of oxidative cyclization reactions of 8 was rationalized. X-ray crystal analyses and MO calculations were carried out to clarify the structural characteristics of 12a(+). BF(4)(-) and 12b(+).BF(4)(-). The stability of cations 12a(+) and 12b(+) is expressed by the pK(R) + values which were determined spectrophotometrically as 8.8 and 8.6. The electrochemical reduction of 12a(+) and 12b(+) exhibited reduction potential at -0.63 and -0.62 (V vs Ag/AgNO(3)), respectively. Reactions of 12a(+)().BF(4)(-) and 12b(+)().BF(4)(-) with some nucleophiles, hydride and diethylamine, were carried out to clarify that the reactivity of 12a(+)().BF(4)(-) and 12b(+).BF(4)(-) was substantially dependent on the annulating position. The oxidizing ability of 12a(+).BF(4)(-) and 12b(+).BF(4)(-) toward alcohols and amines in the autorecycling process was demonstrated as well.  相似文献   

12.
黄维垣  黄炳南  王巍 《化学学报》1983,41(12):1193-1195
全氟碘代烷与亚硫酸盐发生单电子转移反应生成全氟亚磺酸盐;连二亚硫酸钠水溶液热分解时,ESR表明生成SO_2~-主阴离子自由基,这两者促使我们尝试用连二亚硫酸钠代替亚硫酸盐与全氟卤代烷反应.实验表明对于全氟碘代烷及溴代烷它是一种有效的  相似文献   

13.
Synthesis of 6-substituted 1-alkoxy-5-alkyluracils 2a-c have been achieved from readily accessible 2-alkyl-3,3-di(methylthio)acryloyl chlorides 4a,b in high overall yields. Treatment of 4a,b with silver cyanate followed by reaction of the resulting isocyanates 5a,b with an appropriate alkoxyamine afforded N-alkoxy-N′-[2-alkyl-3,3-di(methylthio)acryloyl]ureas 6a,b in 85–88% yields. Cyclization of 6a,b in acetic acid containing methanesulfonic acid followed by oxidation with 3-chloroperoxybenzoic acid gave high yields of 1-alkoxy-5-alkyl-6-(methylsulfonyl)uracils 9a,b. Nucleophillic addition-elimination reaction of 9a,b with sodium azide, phenylthiol, or phenylselenol produced 6-azido-1-butoxythymine ( 2a , 98%), 5-ethyl-1-(2-phenoxyethoxy)-6-(phenylthio)uracil ( 2b , 95%), or 5-ethyl-1-(2-phenoxyethoxy)-6-(phenylselenenyl)uracil ( 2c , 91%).  相似文献   

14.
Deprotonation of the phosphamonocarbaborane, exo-6-R-arachno-6,7-PCB(8)H(12) (R = Ph 1a or Me 1b), yields exo-6-R-arachno-6,7-PCB(8)H(11)(-), which when reacted with appropriate transition-metal reagents affords new metallaphosphamonocarbaborane complexes in which the metals adopt endo-eta(1), exo-eta(1), eta(4), eta(5), or eta(6) coordination geometries bonded to the formal R-arachno-PCB(8)H(11)(-), R-arachno-PCB(8)H(10)(2-), R-arachno-PCB(8)H(9)(3-), or R-nido-PCB(8)H(9)(-) ligands. The reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with Mn(CO)(5)Br generated the eta(1)-sigma product exo-6-[Mn(CO)(5)]-endo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (2) having the [Mn(CO)(5)] fragment in the thermodynamically favored exo position at the P6 cage atom. On the other hand, reaction of 1a- with (eta(5)-C(5)H(5))Fe(CO)(2)I resulted in the formation of two products, an eta(1)-sigma complex endo-6-[(eta(5)-C(5)H(5))Fe(CO)(2)]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (3) having the (eta(5)-C(5)H(5))Fe(CO)(2) fragment attached at the endo-P6 position and an eta(6)-closo complex, 1-(eta(5)-C(5)H(5))-2-(C(6)H(5))-closo-1,2,3-FePCB(8)H(9) (4a). Rearrangement of the endo-compound 3 to its exo-isomer 5 was observed upon photolysis of 3. Synthesis of the methyl analogue of 4a, 1-(eta(5)-C(5)H(5))-2-CH(3)-closo-1,2,3-FePCB(8)H(9) (4b), along with a double-insertion product, 1-CH(3)-2,3-(eta(5)-C(5)H(5))(2)-2,3,1,7-Fe(2)PCB(8)H(9) (6), containing two iron atoms eta(5)-coordinated to a formal R-arachno-PCB(8)H(9)(3-), was achieved by reaction of exo-6-CH(3)-arachno-6,7-PCB(8)H(11)(-) (1b-) with FeCl(2) and Na(+)C(5)H(5)(-). Complexes 4a and 4b can be considered ferrocene analogues, in which an Fe(II) is sandwiched between C(5)H(5)(-) and 6-R-nido-6,9-PCB(8)H(9)(-) anions. Reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with cis-dichlorobis(triphenylphosphine)platinum (II) afforded two compounds, an eta(1)-sigma complex with the metal fragment again in the endo-P6 position, endo-6-[cis-(Ph(3)P)(2)PtCl]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7) and an eta(4)-complex, 7-(C(6)H(5))-11-(Ph(3)P)(2)-nido-11,7,8-PtPCB(8)H(10) (8) containing the formal R-arachno-PCB(8)H(10)(2)(-) anion. The structures of compounds 2, 3, 4a, 4b, 6, 7, and 8 were crystallographically confirmed.  相似文献   

15.
Several new acyclonucleoside purine and 8-azapurine analogs have been prepared from 2-amino-4,6-dichloropyrimidine ( 1 ) and 3-amino-1,2-propanediol ( 2a ) and 4-amino-1-butanol ( 2b ), respectively, as the starting materials. The new target compounds are: 2-amino-6-chloro-9-(2,3-dihydroxypropyl)purine ( 6a ), 2-amino-6-chloro-9-(4-hydroxybutyl)purine ( 6b ), 2-amino-6-chloro-9-(2,3-dihydroxypropyl)-8-azapurine ( 7a ), 2-amino-6-chloro-9-(4-hydroxybutyl)-8-azapurine ( 7b ), 9-(2,3-dihydroxypropyl)-8-azaguanine ( 8a ), 9-(4-hydroxybutyl)-8-azaguanine ( 8b ), 9-(2,3-dihydroxypropyl)-8-azathioguanine ( 9a ), and 9-(4-hydroxybutyl)-8-azathioguanine ( 9b ). Also, the requisite intermediate pyrimidine derivatives, 2,5-diamino-4-(2,3-dihydroxypropylamino)-6-chloropyrimidine ( 5a ) and 2,5-diamino-4-(4-hydroxybutylamino)-6-chloropyrimidine ( 5b ) are novel.  相似文献   

16.
The one-pot reaction of 2-tert-butylthio-3-phenylcyclopropenethione (1a) and its 3-(2-thienyl) derivative (1b) with lithium pyrrolidinide at -70 degrees C, followed by methylation with methyl iodide, gives 6-methylthio-5-phenyl-2,3-dihydro-1H-pyrrolizine (2a) and its 5-(2-thienyl) derivative (2b), respectively. The reaction of 2-tert-butylthio-3-(pyrrolidin-1-yl)cyclopropenethione (1c) with phenyllithium gives also 2a in a high yield under similar conditions, and the reactions of 1a with N-lithium salts of 3-pyrroline, hexamethyleneimine, indoline, and carbazole, piperidine-potassium tert-butoxide mixture, and phenyllithium give 6-methylthio-5-phenyl-3H-pyrrolizine (3), 2-methylthio-3-phenyl-6,7, 8,9-tetrahydro-5H-pyrrolo[1,2-a]azepine (5), 6-tert-butylthio-5-methylthio-4-phenyl-1,2-dihydro-6H-pyrrolo[3,2, 1-ij]quinoline (6), 4-tert-butylthio-5-methylthio-6-phenyl-4H-pyrido[3,2,1-jk]carbazole (7), 2-methylthio-3-phenyl-5,6,7,8-tetrahydroindolizine (4), and 1-tert-butylthio-2-methylthio-3-phenylindene (9), respectively. The structures of 2a and 3 were determined by X-ray analyses of their tricarbonylchromium complexes.  相似文献   

17.
Treatment of 1-(2'-bromo-3',4'-dialkoxybenzyl)-1,2,3, 4-tetrahydroisoquinoline carbamates, 1a,c, with excess alkyllithium gave 8-oxoberbines, 2a,c, which were successively attacked in situ with another molecule of alkyllithium to give 1,2 and/or 1,4 addition products. A primary alkyllithium, such as MeLi or BuLi, gave a 1,2 addition product, 8-methyleneberbine 9a or 8-butylideneberbine 3a. t-BuLi preferred 1,4 addition, followed by elimination of the alkoxy group, to give 9-tert-butyl-8-oxoberbine 6a or 7c. s-BuLi gave a mixture of 1,2 and 1,4 addition products, 1-[2'-(2' '-methylbutyryl)benzyl]-1,2,3,4-tetrahydroisoquinoline 4a and 9-s-butyl-8-oxoberbine 5a. Similar treatments of carbamate 1b having no alkoxy group at its 3' position gave 1,2 addition products, 8-butylideneberbine 3b, 1-[2'-(2' '-methylbutyryl)benzyl]-1,2,3, 4-tetrahydroisoquinoline 4b, and 1-(2'-pivaloylbenzyl)-1,2,3, 4-tetrahydroisoquinoline 6b, in all cases. Reactions of 1a with s-BuMgCl and isoPrMgCl also gave the 1,4 adduct, 5a, and its 9-isoPr analogue, 12a. Treatment of 9a with excess NaBH(4) in AcOH gave (+/-)-coralydine (10b).  相似文献   

18.
A new approach to the 2H-pyrano[3,2-c]pyridine system is described. 5,6-Disubstituted 3-benzoylamino-2H-pyran-2-ones 3a,b , prepared from the corresponding 1,3-dicarbonyl compounds 1a,b and methyl (Z)-2-benzoylamino-3-dimethylaminopropenoate ( 2 ), were converted into 3-benzoylamino-6-(2-dimethylamino-1-ethenyl)-5-ethoxycarbonyl-2H-pyran-2-one ( 4a ) and 5-acetyl derivative 4b . The exchange of the dimethylamino group in 4a,b with aromatic amines 5a-f,m , héteroaromatic amines 5g-i , and benzylamines 5j-l produced 5-ethoxycarbonyl-3-benzoylamino-6-(2-arylamino- or heteroarylamino-or benzylamino-1-ethenyl)-2H-pyran-2-ones 6a-l , and its 5-acetyl analog 6m . The compounds 6 were cyclized in basic media into 2H-pyrano[3,2-c]pyridine derivatives 7a-h . Analogously react also α-amino acid derivatives 8a-c and 11 as nitrogen nucleophiles producing 9a-c, 10 and 12 .  相似文献   

19.
Cai H  Yu X  Chen S  Qiu H  Guzei IA  Xue ZL 《Inorganic chemistry》2007,46(19):8071-8078
M(NMe2)4 (M = Zr, 1a; Hf, 1b) and the silyl anion (SiButPh2)- (2) in Li(THF)2SiButPh2 (2-Li) were found to undergo a ligand exchange to give [M(NMe2)3(SiButPh2)2]- (M = Zr, 3a; Hf, 3b) and [M(NMe2)5]- (M = Zr, 4a; Hf, 4b) in THF. The reaction is reversible, leading to equilibria: 2 1a (or 1b) + 2 2 <--> 3a (or 3b) + 4a (or 4b). In toluene, the reaction of 1a with 2 yields [(Me2N)3Zr(SiButPh2)2]-[Zr(NMe2)5Li2(THF)4]+ (5) as an ionic pair. The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in (Me2N)3Zr-N(SiMe3)2 (6a) to give 3a and [N(SiMe3)2]- (7) in reversible reaction: 6a + 2 2 <--> 3a + 7. The following equilibria have also been observed and studied: 2M(NMe2)4 (1a; 1b) + [Si(SiMe3)3]- (8) <--> (Me2N)3M-Si(SiMe3)3 (M = Zr, 9a; Hf, 9b) + [M(NMe2)5]- (M = Zr, 4a; Hf, 4b); 6a (or 6b) + 8 <--> 9a (or 9b) + [N(SiMe3)2]- (7). The current study represents rare, direct observations of reversible amide-silyl exchanges and their equilibria. Crystal structures of 5, (Me2N)3Hf-Si(SiMe3)3 (9b), and [Hf(NMe2)4]2 (dimer of 1b), as well as the preparation of (Me2N)3M-N(SiMe3)2 (6a; 6b) are also reported.  相似文献   

20.
A synthetic sequence involving the initial reaction of a substituted phosphorus dihalide (RPCl(2), R = CH(3), C(6)H(5)) with the arachno-CB(8)H(13)(-) (1-) monoanion followed by an in situ dehydrohalogenation reaction initiated by Proton Sponge, resulted in phosphorus cage insertion to yield the first 10-vertex arachno- and nido-phosphamonocarbaboranes, exo-6-R-arachno-6,7-PCB(8)H(12) (2a, 2b) and PSH(+)6-R-nido-6,9-PCB(8)H(9)(-) (PSH+3a-, PSH+3b-) (R = C(6)H(5) (a), CH(3) (b)). Alternatively, 2a and 2b were synthesized in high yield as the sole product of the reaction of the arachno-4-CB(8)H(12)(2-) (1(2-)) dianion with RPCl(2). Crystallographic determinations of PSH+3a- and PSH+3b- in conjunction with DFT/GIAO computational studies of the anions have confirmed the expected nido cage framework based on an octadecahedron missing the six-coordinate vertex. DFT/GIAO computational studies have also shown that while the gross cage geometries of the exo-6-R-arachno-6,7-PCB(8)H(12) compounds 2a and 2b resemble the known isoelectronic arachno-6,9-SCB(8)H(12), the phosphorus and carbon atoms are in thermodynamically unfavorable adjacent positions on the six-membered puckered face. They also each have an endo-hydrogen at the P6-position arising from proton transfer to the basic phosphorus during the cage-insertion reaction. Possible stepwise reaction pathways that can account for the formation of both the arachno and nido products are discussed. Deprotonation of 2a and 2b resulted in the formation of their corresponding conjugate monoanions, 6-R-arachno-6,7-PCB(8)H(11)(-) (2a-, 2b-), in which the proton that had been attached to the P6 atom was removed. Reactions of 2a- with O(2), S(8), BH(3).THF, or Br(2) further demonstrated the basicity of the P6-phosphorus yielding the new arachno-substituted compounds, endo-6-O-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (4a-), endo-6-S-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (5a-), endo-6-BH(3)-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (6a-), and endo-6-Br-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7a), respectively, in which the O, S, BH(3), and Br substituents are bound to the phosphorus at the endo position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号