首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel mononuclear five‐coordinate nickel complexes with distorted square‐pyramidal geometries are presented. They result from association of a tridentate “half‐unit” ligand and 6,6′‐dimethyl‐2,2′‐bipyridine according to a stepwise process that highlights the advantage of coordination chemistry in isolating an unstable tridentate ligand by nickel chelation. Their zero‐field splittings (ZFS) were studied by means of magnetic data and state‐of‐the‐art ab initio calculations. Good agreement between the experimental and theoretical axial D parameters confirms that large single‐ion nickel anisotropies are accessible. The synthetic process can also yield dinuclear nickel complexes in which the nickel ions are hexacoordinate. This possibility is facilitated by the presence of phenoxo oxygen atoms in the tridentate ligand that can introduce a bridge between the two nickel ions. Two different double bridges are characterized, with the bridging oxygen atoms coming from each nickel ion or from the same nickel ion. This coordination change introduces a difference in the antiferromagnetic interaction parameter J. Although the magnetic data confirm the presence of single‐ion anisotropies in these complexes, these terms cannot be determined in a straightforward way from experiment due to the mismatch between the principal axes of the local anisotropies and the presence of intersite anisotropies.  相似文献   

2.
Two new nickel(II) complexes [Ni(2)L(2)(PhCOO)(2)(H(2)O)] (1), [Ni(2)L(2)(PhCH(2)COO)(2)(H(2)O)] (2) have been synthesized using a tridentate Schiff base ligand, HL (2-[(3-dimethylamino-propylimino)-methyl]-phenol) and the carboxylate monoanions, benzoate and phenylacetate, respectively. The complexes have been characterized by spectral analysis, variable temperature magnetic susceptibility measurement and crystal structure analysis. The structural analyses reveal that both complexes are dinuclear in which the distorted octahedral Ni(2+) ions share a face, bridged by one water molecule and two μ(2)-phenoxo oxygen atoms. A monodentate benzoate or phenylacetate anion and two nitrogen atoms of the chelating deprotonated Schiff base (L) complete the hexa-coordination around the metal ion. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complexes 1 and 2 with J values of 11.1(2) and 10.9(2) cm(-1) respectively. An attempt has been made to rationalize the observed magneto-structural behavior considering the importance of the additional water bridge in the present two complexes and also in other similar species.  相似文献   

3.
Metal complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with Schiff base derived from 2,5-dihydroxyacetophenone and s-benzyldithiocarbazate have been synthesized and characterized by elemental analysis, thermogravimetric analysis, molar conductance, molecular weight, magnetic susceptibility measurements, and electronic and infrared spectra. The molar conductivity data show them to be nonelectrolytes. The Schiff base behaves as a tridentate dibasic ONS donor towards metal ions. Thermal analyses indicate the presence of water in the complexes, making them six and four coordinates. The solid state electrical conductivity of the ligand and its complexes has been measured in the temperature range 313–414 K and the complexes are found to show semiconducting behavior. The antibacterial activities of the ligand and its complexes have also been screened against various organisms and it is observed that the coordination of metal ions has a pronounced effect on the bacterial activity of the ligand.  相似文献   

4.
The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N′-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L1) and N,N-diethyl-N′-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L1)(SCN)2(OH2) (1) and [{Ni(L2)(SCN)}2] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.  相似文献   

5.
Liquid-crystalline derivatives of poly(propylene imine)dendrimers of the 0th, 1st and 2nd generations, complexed with copper(II) ions, were studied by EPR spectroscopy. The structures of copper (II) complexes with different Cu(II) loadings x per dendrimer ligand L (x = Cu/L) were determined. At the lowest concentration, the Cu(II) ions form monomeric complexes with approximately square-planar N2O2 coordination of both carbonyl oxygen and amido nitrogen atoms. At higher copper content, two kinds of Cu(II) complex sites with different geometries exist. The orienting effect of a high magnetic field was used to investigate the structure and magnetic properties of the copper(II) complexes. This effect, for the first time in dendrimers, allowed the resolution of five nitrogen super-hyperfine lines on g(z) components with the unusual coupling constant of a(Nz)= 35.9 x 10(-4) cm(-1). The combination of the magnetic parameters and the orienting effect indicates the presence of a monomeric complex with pseudotetrahedral N2O2 coordination of the Cu(II) ion, as well as a "dimer" structure with fivefold coordination, presumably due to an N3O2 environment. Higher copper loadings lead to increased exchange coupling between the complex sites.  相似文献   

6.
Two novel lanthanide coordination polymers, [Eu(2)(EBTC)(DMF)(5)(NO(3))(2)]·DMF (1) and [Eu(2)(BBTC)(1.5)(CH(3)OH)(2)(H(2)O)(2)]·7DMF·HNO(3) (2) (EBTC(4-) = 1,1'-ethynebenzene-3,3',5,5'-tetracarboxylate; BBTC(4-) = 1,1'-butadiynebenzene-3,3',5,5'-tetracarboxylate), were successfully synthesized from conjugated ligands of EBTC(4-) and BBTC(4-). Although the two tetracarboxylate ligands have similar structures, their different rigidity/flexibility results in quite different networks upon complexation. Complex 1 has a two-dimensional (2-D) layered structure with two crystallographically independent Eu(3+) ions, one in a distorted monocapped square-antiprism and the other in a distorted square-antiprism coordination geometry. Complex 2 exhibits a three-dimensional (3-D) porous framework, with one type of Eu(3+) in a distorted square-antiprism and the other in a trigondodecahedron environment. Both 1 and 2 emit the intensely red characteristic luminescence of Eu(3+) ion at room temperature, with a long lifetime of up to 1.3 and 0.7 ms, respectively, during which the ligand emission of EBTC(4-)/BBTC(4-) was quenched by the Eu(3+) ion, indicating the existence of efficient energy transfer between the conjugated ligand of EBTC(4-)/BBTC(4-) and the Eu(3+) ion. Thus, both EBTC(4-) and BBTC(4-) are ideal ligands with an "antenna" effect for the Eu(3+) ion. The two complexes show the single-ion magnetic behaviors of Eu(3+) with strong spin-orbit coupling interactions even if there are shorter distances (5.714 ? for 1 versus 4.275 and 5.360 ? for 2) between the neighboring Eu(3+) ions connected by oxygen atoms of the tetracarboxylates.  相似文献   

7.
Two new pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by the 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. A Ni(II) complex of HL1 and Co(III) and Fe(III) complexes of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using the pyrimidyl and azomethine nitrogen and thiolato sulfur atoms (except in the nickel complex, one ligand molecule uses the thione sulfur in lieu of thiolato sulfur atom). In the Ni(II) complex, one of the ligand molecules behaves as a neutral tridentate and the other molecule functions as a uninegative tridentate, whereas in the Co(III) and Fe(III) complexes, the ligand molecules behave as monoanionic tridentate. All the complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from an octahedral geometry of the coordination environment were observed.  相似文献   

8.
Manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and chromium(III) complexes of (E)-2-(2-(2-hydroxybenzylidene)hydrazinyl)-2-oxo-N-phenylacetamide were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment. Mononuclear complexes are obtained with 1:1 molar ratio except [Mn(HOS)(2)(H(2)O)(2)] and [Co(OS)(2)](H(2)O)(2) complexes which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a monobasic bidentate one and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the carbonyl oxygen atom, azomethine nitrogen atom and the hydroxyl oxygen. Moreover, the ligand behaves as a dibasic tridentate and coordination occurs via the enolic oxygen, azomethine nitrogen and the hydroxyl oxygen atoms. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complexes possesses a square planar geometry. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes. The protonation constant of the ligand and the stability constant of metal complexes were determined pH-metrically in 50% (v/v) dioxane-water mixture at 298 K and found to be consistent with Irving-Williams order. Moreover, the minimal inhibitory concentration (MIC) of these compounds against Staphylococcus aureus, Escherechia coli and Candida albicans were determined.  相似文献   

9.
Two copper(II) complexes with the general formula [Cu(L)(H2O)](ClO4)2 (1) and [Cu(L)2](ClO4)2 (2), where L=3-((pyridin-2-ylmethyl)amino)propanamide, were synthesized and characterized by elemental analyses, IR, UV–vis spectroscopy techniques and molar conductance measurements. The crystal structures of the complexes were identified by single crystal X-ray diffraction analysis. The tridentate ligand L acts as an N2O-donor through the nitrogen atoms of the pyridine and amine moieties as well the oxygen atom of the amide group. The copper(II) ions in both complexes have distorted octahedron structures so that the Cu(II) ion in 1 is coordinated by an aqua ligand and a tridentate ligand defining the basal plane, and by two oxygen atoms of the perchlorate ions occupying the axial positions. However, two ligands L are coordinated to the copper(II) ion in 2, where four nitrogen atoms of pyridine and amine groups occupy the equatorial positions and two oxygen atoms of the amide moieties exist in the apices. The chromotropism (halo-, solvato- and ionochromism) of both complexes were studied using visible absorption spectroscopy. The complexes are soluble in water and organic solvents and display reversible halochromism. The solvatochromism property is due to structural change followed by solvation of the vacant sites of the complexes. The complexes demonstrated obvious ionochromism and are highly sensitive and selective towards CN? and N3? anions in the presence of other halide and pseudo-halide ions.  相似文献   

10.
The coordination chemistry of N′-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methylene)-2-hydroxybenzohydrazide with copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), palladium(II), iron(III), ruthenium(III), uranyl(VI), and titanium(IV) has been studied. The ligand and its complexes was characterized by elemental and thermal analyses, magnetic moments and conductivity measurements as well as spectroscopic techniques such as infrared, mass spectra, nuclear magnetic resonance, electron spin resonance and electronic absorption spectra. The spectral data showed that the ligand is monobasic tridentate coordinated via the enolic carbonyl oxygen of the hydrazide moiety, azomethine nitrogen and pyrazolone oxygen atoms.  相似文献   

11.
Two pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. One Co(III) and one Mn(II) complex of HL1 and one Mn(II) complex of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using pyrimidyl nitrogen, azomethine nitrogen and the thiolato sulfur atoms. In the free ligand moieties, the pyrimidine nitrogen atoms, azomethine nitrogen atoms and thione sulfur atoms are in EEE orientation to each other. During chelation, all the donor sites of the ligands are reoriented to ZEZ configuration in order to facilitate the chelation process. In all the complexes, the respective ligand molecule functions as the monoanionic tridentate one. All complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from octahedral geometry of the coordination environment were observed.  相似文献   

12.
Pan Z  Song Y  Jiao Y  Fang Z  Li Y  Zheng H 《Inorganic chemistry》2008,47(12):5162-5168
Four new coordination complexes, M2(Htmopa)4(H2O)4 (M = Zn2+ (1), Mn2+ (2), (M(Htmopa)2(H2O)2)n (M = Ni2+ (3), Co2+ (4)), have been synthesized by the hydrothermal reaction of Htmopa (Htmopa = 2,3,6,7-tetramethoxyphenanthrene-9-carboxylic acid) with different transition metals at a suitable temperature. Single-crystal determinations revealed that 1 and 2 are isostructural and possess a dinuclear subunit, each connected into 3D networks by hydrogen bonds and C-H...pi interactions. 3 and 4 are also isostructural: the metal ions are bridged through water molecules and carboxylate oxygen atoms to form 1D wavelike double chains, and these double chains are further extended to a 3D network via hydrogen bonds and C-H...pi interactions. The photoluminescent properties of the free Htmopa ligand and its complexes have been studied in the solid state at room temperature. Both Htmopa and 1 exhibit strong blue emissions. Magnetic susceptibility measurements indicate that 2 and 3 exhibit antiferromagnetic coupling, whereas 4 shows a ferromagnetic coupling and exhibits a single-ion behavior of the Co II ion at a higher temperature range.  相似文献   

13.
A series of chromone Schiff base complexes were prepared and analytically as well as spectroscopically characterized. The ligand was found to act as a monobasic tridentate ligand bonded covalently or coordinatively to the metal ion via deprotonated hydroxyl group, azomethine nitrogen atom and carbonyl oxygen atom of antipyrine moiety. Both electronic spectra and magnetic measurements indicated an octahedral or a distorted octahedral geometry around the metal ions for all metal complexes except the nickel complex, which had a tetrahedral geometry. In addition, the ability of the newly prepared compounds to activate the tumour suppressor p53 in cancer cells was studied, with zinc and copper complexes showing promising activities for p53 ubiquitination compared with diphenylimidazole (reference drug).  相似文献   

14.
The basicity behavior and ligational properties of the ligand 2-((bis(aminoethyl)amino)methyl)phenol (L) toward Ni(II), Cu(II), and Zn(II) ions were studied by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, l = 0.15 mol dm-3). The anionic L-H- species can be obtained in strong alkaline solution; this species behaves as tetraprotic base (log K1 = 11.06, log K2 = 9.85, log K3 = 8.46, log K4 = 2.38). L forms mono- and dinuclear complexes in aqueous solution with all the transition metal ions examined; the dinuclear species show a [M2(L-H)2]2+ stoichiometry in which the ligand/metal ratio is 2:2. The studies revealed that two mononuclear [ML-H]+ species self-assemble, giving the dinuclear complexes, which can be easily isolated from the aqueous solution due to their low solubility. This behavior is ascribed to the fact that L does not fulfill the coordination requirement of the ion in the mononuclear species and to the capacity of the phenolic oxygen, as phenolate, to bridge two metal ions. All three dinuclear species were characterized by determining their crystal structures, which showed similar coordination patterns, where all the single metal ions are substantially coordinated by three amine functions and two oxygen atoms of the phenolate moieties. The two metals in the dinuclear complexes are at short distance interacting together as shown by magnetic measurements performed with Ni(II) and Cu(II) complexes, which revealed an antiferromagnetic coupling between the two metal ions. The [Cu2(L-H)2]2+ cation shows a phase transition occurring by the temperature between 100 and 90 K; the characterization of the compounds existing at different temperatures was investigated using X-ray single-crystal diffraction, EPR, and magnetic measurements.  相似文献   

15.
A new mononuclear nickel(II) complex incorporating a Schiff-base ligand, [NiL2](DMF)4 (HL = 2′-(3,5-dibromo-2-hydroxybenzylidene)-3,5-dihydroxybenzoylhydrazide), has been synthesized and characterized by IR, UV-Vis, elemental analysis and X-ray crystal structure analysis. HL is an anionic tridentate ligand. The nickel atom is hexacoordinated with two oxygen atoms from keto group and two oxygen atoms from hydroxy group and two nitrogen atoms from amide, with the two nitrogen atoms occupying the axial positions forming a distorted octahedral coordination sphere.  相似文献   

16.
Copper(II), zinc(II), and nickel(II) complexes with tridentate imino nitroxyl diradicals, [CuCl(bisimpy)(MeOH)](PF(6)) (1), [ZnCl(2)(bisimpy)] (2), and [NiCl(bisimpy)(H(2)O)(2)]Cl x 2H(2)O (3) (bisimpy = 2,6-bis(1'-oxyl-4',4',5',5'-tetramethyl-4',5'-dihydro-1'H-imidazol-2'-yl)pyridine), were prepared, and their magnetic properties were studied. In 1, the Cu(II) ion has a square pyramidal coordination geometry, of which the equatorial coordination sites are occupied by three nitrogen atoms from the bisimpy and a chloride ion. The coordination geometry of the Zn(II) ion in 2 can be described as a trigonal bipyramid, with two chloride ions and a bisimpy. In 3, the Ni(II) ion has a distorted octahedral coordination geometry, of which four coordination sites are coordinated by the bisimpy and chloride ion, and two water molecules occupy the remaining cis positions. Magnetic susceptibility and EPR measurements revealed that in 1 and 3 the Cu(II) and Ni(II) ions with imino nitroxyl diradicals were ferromagnetically coupled, with the coupling constants J (H = -2J(ij) summation operator S(i)S(j)) of +165(1) and 109(2) cm(-1), respectively, and the intraligand ferromagnetic interactions in 1-3 were very weak. DFT molecular orbital calculations were performed on the diradical ligand, 1, and 2 to study the spin density distribution before and after coordination to the metal ions.  相似文献   

17.
Lanthanide-organic coordination polymeric networks of [Ln(III)2(suc)3(H2O)2].0.5H2O [suc = succinate dianion, Ln = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), and Dy (6)] have been synthesized and characterized by single-crystal X-ray diffraction analyses. The structural determination reveals that complexes are isomorphous, all crystallizing in monoclinic system, space group I2/a(.) The complexes possess a 3D architecture with Ln ion in a nine-coordination geometry attained by eight oxygen atoms from succinate and one oxygen atom from an aqua ligand. Low-temperature magnetic study indicates that ferromagnetic interaction is present in case of Gd(III) and Dy(III). Antiferromagnetic interaction is observed for the rest of the complexes. Density functional theory calculations are performed which support the existence of a superexchange ferromagnetic coupling in Gd(III) ions, whereas classical crystal field model has been applied to study the complexes 1, 2, 3, and 6.  相似文献   

18.
Cai  Chen-Xin  Tian  Yun-Qi  Ren  Xiao-Ming  Li  Yi-Zhi  You  Xiao-Zeng 《Transition Metal Chemistry》2003,28(3):312-315
The solvothermal synthesis and crystal structure of the one-dimensional coordination polymer Ni(DMBDIZ) (OOCMe)2 (DMBDIZ = 2,6-dimethyl-benzo[1,2-d:4,5-d]diimidazole) are described. Each nickel ion is located in pseudo-octahedral geometry formed by four oxygen atoms from two bidentate acetate anions and two trans-related tertiary nitrogen donors from two different DMBDIZ ligands. The DMBDIZ entity acts as a trans exo-bidentate ligand and bridges the nickel ions to form a uniform linear chain with Ni···Ni separation = 8.703 Å. The hydrogen bonding between the acetate anions and the ligands contributes to the enhancement of the structural dimensionality. Variable-temperature magnetic susceptibility measurements (2.0–300 K) reveal the presence of a very weak ferromagnetic interaction between the magnetic centers.  相似文献   

19.
The binding of CoII, NiII, and CuII cations to the lithium 3-pyridinesulfonate ligand in an aqueous solution leads to single crystals of coordination polymers 1-3. The solid-state architectures of 1-3 which resulted from the combination of ligand-water heterocomplexation processes are linear coordination polymers packed into parallel alternatively stratified layers. These layers are interconnected through intermolecular hydrogen-bonding interactions occurring between the coordinated water molecules and the noncoordinating oxygen atoms of the sulfonate groups. Consequently, this leads to the formation of the cross-linked 3D (1, 2) or layered 2D (3) networks exhibiting 12-point or four-point hydrogen bond contacts between each unit with eight or four adjacent neighbors, respectively. The reversible structural rearrangement of these frameworks proceeds from the "relaxed" room-temperature phase to the "contracted" low-temperature phase in response to an external thermal stimulus. The reversibility of the contraction/relaxation process has been tested and confirmed by X-ray analysis. Motions toward shortening intermolecular distances have the consequence of increasing the degree of magnetic interaction between the metal ions. The magnetic measurements carried out in the range 1.8-400 K on the three compounds show an unusual change from antiferromagnetic to ferromagnetic behavior related to the structural variations recorded at low temperatures and to the loss of water above 350 K.  相似文献   

20.
Cobalt(II), nickel(II), copper(II), and zinc(II) trifluoromethanesulfonates form complexes with the phosphoryl ligands hexamethylphosphoric triamide, nonamethyl imidodiphosphoric tetramide, trimorpholinophosphine oxide, tributylphosphine oxide, and triphenylphosphine oxide. The compounds have been prepared by a substitution reaction using trialkyl orthoformates as dehydrating agents and were investigated with the aid of infrared and ligand-field spectroscopy. In all compounds the ligands coordinate via the phosphoryl oxygen atoms. In some complexes the trifluoromethanesulfonate anions are (semi-)coordinated to the metal ions. The coordination around the metal ions was found to be tetrahedral, square pyramidal, or octahedral depending on the particular combination of metal ion and ligand. In its coordination behaviour the CF3SO3? ion resembles the perrhenate ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号