首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of a chiral RuCl2(diphosphine)(1,2-diamine) complex and NaBH4 forms trans-RuH(eta1-BH4)(diphosphine)(1,2-diamine) quantitatively. The TolBINAP/DPEN Ru complex has been characterized by single crystal X-ray analysis as well as NMR and IR spectra. The new Ru complexes allow for asymmetric hydrogenation of simple ketones in 2-propanol without an additional strong base. Various base-sensitive ketones are convertible to chiral alcohols in a high enantiomeric purity with a substrate/catalyst ratio of up to 100 000 under mild conditions. Configurationally unstable 2-isopropyl- and 2-methoxycyclohexanone can be kinetically resolved with a high enantiomer discrimination. This procedure overcomes the drawback of an earlier method using RuCl2(diphosphine)(diamine) and an alkaline base, which sometimes causes undesired reactions such as ester exchange, epoxy-ring opening, beta-elimination, and polymerization of ketonic substrates.  相似文献   

2.
Understanding the interaction of chiral ligands, alkynes, and alkenes with cobaltcarbonyl sources is critical to learning more about the mechanism of the catalytic, asymmetric Pauson-Khand reaction. We have successfully characterized complexes of the type [Co2(alkyne)(binap)(CO)4] (BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine)) and shown that diastereomer interconversion occurs under Pauson-Khand reaction conditions when alkyne=HC[triple bond]CCO2Me. Attempts to isolate [Co2(alkyne)(binap)(CO)x] complexes with coordinated alkenes led to the formation of cobaltacyclopentadiene species.  相似文献   

3.
Four (binap)(enyne)tetracarbonyldicobalt(0) complexes have been synthesised and their reactivity monitored by variable temperature (31)P NMR spectroscopy. Formation of (binap)dicarbonylhydridocobalt(-1) 12 occurred at temperatures between 35 and 55 degrees C, depending on the nature of the alkene and alkyne components of the enyne. The structure of 12 was determined by X-ray crystallography, and its presence under Pauson-Khand reaction conditions was verified by NMR spectroscopy.  相似文献   

4.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

5.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

6.
Chiral ligands—derivatives of (1R,2R)-cyclohexane-1,2-diamine, (1R,2R)-diphenylethane-1,2-diamine, and (2S,3S)-bicyclo[2.2.2]octane-2,3-diamine—and octahedral Ni(II) complexes on their basis have been synthesized.  相似文献   

7.
8.
Reduction of [(triphos)NiCl2] (1) with an excess of NaBH4 in THF produces the paramagnetic Ni(I) complex [(triphos)Ni(eta2-BH4)] (2). X-ray crystallography shows 1 to be a square-planar Ni(II) species in which the phosphine ligand is bidentate, whereas 2 has pseudotetrahedral geometry at the Ni(I) center, with a tridentate phosphine and the borohydride ligand occupying a single coordination site. Density functional theory calculations show the unpaired electron in 2 to reside in an orbital located mainly on the Ni atom.  相似文献   

9.
Reactions of 2-hydroxy-5-(1-admantyl)benzene-1,3-dicarbaldehyde with ethane-1,2-diamine, transcyclohexane-1,2-diamine, and N-(2-aminoethyl)ethane-1,2-diamine were studied in strongly dilute solution and under conditions of template synthesis in the presence of H3BO3. The effects of reaction conditions and initial diamine structure on the cyclocondensation process were determined. Selective [3 + 3]-cyclocondensation of 2-hydroxy-5-(1-admantyl)benzene-1,3-dicarbaldehyde with trans-cyclohexane-1,2-diamine and [2 + 2]-cyclization with N-(2-aminoethyl)ethane-1,2-diamine were performed in chloroform in the presence of H3BO3. The first representative of adamantylcalixsalens was synthesized.  相似文献   

10.
11.
DNA damage by MoCH3(eta3-allyl)(CO)2(phen) complexes has been shown to occur by two mechanisms: by backbone cleavage via the abstraction of H1' and/or H5' from the deoxyribose moiety and by base modification, resulting in G-specific cleavage via the formation of base-labile residues methylguanine, methoxyguanine, and 8-oxo-G.  相似文献   

12.
Hydride abstraction from C(5)Me(5)(CO)(2)Re(eta(2)-PhC triple bond CCH(2)Ph) (1) gave a 3:1 mixture of eta(3)-propargyl complex [C(5)Me(5)(CO)(2)Re(eta(3)-PhCH-C triple bond CPh)][BF(4)] (5) and eta(2)-1-metalla(methylene)cyclopropene complex [C(5)Me(5)(CO)(2)Re(eta(2)-PhC-C=CHPh)][BF(4)] (6). Observation of the eta(2)-isomer requires 1,3-diaryl substitution and is favored by electron-donating substituents on the C(3)-aryl ring. Interconversion of eta(3)-propargyl and eta(2)-1-metalla(methylene)cyclopropene complexes is very rapid and results in coalescence of Cp (1)H NMR resonances at about -50 degrees C. Protonation of the alkynyl carbene complex C(5)Me(5)(CO)(2)Re=C(Ph)C triple bond CPh (22) gave a third isomer, the eta(3)-benzyl complex [C(5)Me(5)(CO)(2)Re[eta(3)(alpha,1,2)-endo,syn-C(6)H(5)CH(C triple bond CC(6)H(5))]][BF(4)] (23) along with small amounts of the isomeric complexes 5 and 6. While 5 and 6 are in rapid equilibrium, there is no equilibration of the eta(3)-benzyl isomer 23 with 5 and 6.  相似文献   

13.
The synthesis of the first completely characterized transition-metal complex containing a sulfur-bound 4,6-dimethyldibenzothiophene (4,6-Me(2)DBT) ligand, [CpRu(CO)(2)(eta(1)(S)-4,6-Me(2)DBT)]BF(4) (1) (Cp = eta(5)-C(5)Me(5)), is reported. X-ray studies of 1 and its 4-methyldibenzothiophene and dibenzothiophene analogues, [CpRu(CO)(2)(eta(1)(S)-4-MeDBT)]BF(4) (2) and [CpRu(CO)(2)(eta(1)(S)-DBT)]BF(4) (3), show that the Ru-S bond distances increase in the order, 3 < 2 < 1. Equilibrium studies on the series of [CpRu(CO)(2)(eta(1)(S)-DBTh)](+) compounds, where DBTh = DBT, 4-MeDBT, 4,6-Me(2)DBT, and 2,8-Me(2)DBT, show that the relative binding strengths of the dibenzothiophene ligands increase in the order 4,6-Me(2)DBT (1) < 4-MeDBT (20.2(1)) < DBT (62.7(6)) < 2,8-Me(2)DBT (223(3)). These results are the first to quantify the steric effect of 4- and 6-methyl groups on the sulfur-coordinating ability of dibenzothiophenes to transition-metal centers. They are also consistent with the proposal that 4- and 6-methyl groups reduce the coordination of dibenzothiophenes to active metal sites on hydrodesulfurization catalysts, which could account for the slow rate of 4-MeDBT and 4,6-Me(2)DBT hydrodesulfurization in petroleum feedstocks.  相似文献   

14.
A series of constrained geometry complexes of formula [(eta5-RC2B9H10)CH2(eta1-NMe2)]Al(Me) (R = H, 2a; Me, 2b) was prepared in high yields from the reaction of dicarbollylamine with trimethylaluminum. These complexes showed a unique constrained geometry structure with a central aluminum atom having eta5;eta1-coordination. DFT calculations further elaborate the electronic effect of an amine sidearm on the bonding capability of dicarbollyl ligand with an aluminum atom. It has been noted that dicarbollylamines are effective ancillary ligands for the production of novel constrained geometry complexes of aluminum.  相似文献   

15.
16.
Oxidative addition of the sulfur-sulfur bond of 2,2'-pyridine disulfide (C(5)H(4)NS-SC(5)H(4)N) with L(3)W(CO)(3) [L = pyridine, (1)/(3)CHPT; CHPT = cycloheptatriene] in methylene chloride solution yields the seven-coordinate W(II) thiolate complex W(eta(2)-mp)(2)(CO)(3) (mp = monoanion of 2-mercaptopyridine). This complex undergoes slow further oxidative addition with additional pyridine disulfide, yielding W(eta(2)- mp)(4). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO results in quantitative formation of the six-coordinate W(0) complex W(eta(2)-mp)(2)(NO)(2). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO in the presence of added pyridine disulfide yields the seven-coordinate W(II) nitrosyl complex W(eta(2)-mp)(3)(NO) as well as W(eta(2)-mp)(2)(NO)(2) and trace amounts of W(eta(2)-mp)(4). The complex W(eta(2)-mp)(3)(NO) is formed during the course of the reaction and not by reaction of W(eta(2)-mp)(4) or W(eta(2)-mp)(2)(NO)(2) with NO under these conditions. The crystal structures of W(eta(2)- mp)(2)(CO)(3), W(eta(2)-mp)(2)(NO)(2), and W(eta(2)-mp)(3)(NO) are reported.  相似文献   

17.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

18.
Syntheses and properties of group-4 complexes incorporating the tridentate, dianionic ligand N,N-(dipyrrolyl-alpha-methyl)-N-methylamine, dpma, have been investigated. Addition of 1 equiv of H(2)dpma to Ti(NMe(2))(4) and Zr(NMe(2))(4) results in transamination with 2 dimethylamides providing Ti(NMe(2))(2)(dpma) and Zr(NMe(2))(2)(NHMe(2))(dpma), respectively. Addition of 2 equiv of H(2)dpma to Zr(NMe(2))(4) and Hf(NMe(2))(4) results in production of the homoleptic complexes Zr(dpma)(2) and Hf(dpma)(2). Conversely, treatment of Ti(NMe(2))(4) with 2 equiv of H(2)dpma does not provide Ti(dpma)(2), which was available by addition of 2 Li(2)dpma to TiCl(4). The properties of the isostructural series M(dpma)(2) were investigated by single crystal X-ray diffraction, cyclic voltammetry, (14)N NMR, and other techniques. By (14)N NMR, it was found that the pyrrolyl resonance chemical shift changes approximately linearly with the electronegativity of the metal center, which was attributed to pi-interaction between the pyrrolyl nitrogen lone pair and the metal. Other complexes produced during this study include Ti(CH(2)SiMe(3))(NMe(2))(dpma), TiCl(2)(THF)(dpma), and Ti(OCH(2)CF(3))(2)(THF)(dpma). Two isomers for Ti(CH(2)SiMe(3))(NMe(2))(dpma) were isolated and characterized.  相似文献   

19.
20.
The mixed-ring beryllocene Be(C5Me5)(C5Me4H), that contains eta 5-C5Me5 and eta 1-C5Me4H rings, the latter bonded to the metal through the CH carbon atom (X-ray crystal structure) reacts at room temperature with CNXyl (Xyl = C6H3-2,6-Me2) to give an iminoacyl product, Be(eta 5-C5Me4H)[C(NXyl)C5Me5] derived from the inverted beryllocene structure Be (eta 5-C5Me4H)(eta 1-C5Me5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号