首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

2.
The amidine complexes cis-[L(2)PtNH==C(R){1-MeCy(-2H)}]NO(3) (R = Me, 1a; Ph, 1b, Me(3)C, 1c; Ph(2)(H)C, 1d) and cis-[L(2)PtNH==C(R){9-MeAd(-2H)}]NO(3) (R = Me, 2a; Ph, 2b; Me(3)C, 2c; Ph(2)(H)C, 2d), are formed when cis-[L(2)Pt(μ-OH)](2)(NO(3))(2) (L = PPh(3)) reacts with 1-methylcytosine (1-MeCy) and 9-methyladenine (9-MeAd) in solution of MeCN, PhCN, Me(3)CCN and Ph(2)(H)CCN. Reaction of 1a,b and 2a,b with HCl affords the protonated amidines [NH(2)==C(R){1-MeCy(-H)}]NO(3) (R = Me, 3a; Ph, 3b) and [NH(2)==C(R){9-MeAd(-H)}]NO(3) (R = Me, 4a; Ph, 4b) and cis-(PPh(3))(2)PtCl(2) in quantitative yield. Treatment of 3b and 4b with NaOH allows the isolation of the neutral benzimidamides NH(2)-C(Ph){1-MeCy(-2H)} (5b) and NH(2)-C(Ph){9-MeAd(-2H)} (6b). In the solid state 3b shows a planar structure with the hydrogen atom on N(4) cytosine position involved in a strong H-bond with the NO(3)(-) ion. Intermolecular H-bonds between the oxygen of the cytosine ring and one of the H atoms of the amidine-NH(2) group allow the dimerization of the molecule. A detailed analysis of the spectra of 3b in DMF-d(7) at -55 °C indicates the presence of an equilibrium between the species [NH(2)==C(R){1-MeCy(-H)}]NO(3) and [NH(2)==C(R){1-MeCy(-H)}](2)(NO(3))(2), exchanging with trace amounts of water at 25 °C. [(15)N,(1)H]-HMBC experiments for 5b and 6b indicate that the amino tautomer H(2)N-C(Ph){nucleobase(-2H)}, is the only detectable in solution and such structure has been confirmed in the solid state. The reaction of 5b and 6b with cis-L(2)Pt(ONO(2))(2) (L = PPh(3)), in chlorinated solvents, determines the immediate appearance of a pale yellow colour due to the coordination of the neutral amidine, likely in its imino form HN==C(Ph){nucleobase(-H)}, to give the adducts cis-[L(2)PtNH==C(Ph){nucleobase(-H)}](2+). In fact, addition of "proton sponge" leads to the immediate deprotonation of the amidine ligand with formation of the starting complexes 1b and 2b.  相似文献   

3.
[Rh(nbd)(PCyp(3))(2)][BAr(F) (4)] (1) [nbd = norbornadiene, Ar(F) = C(6)H(3)(CF(3))(2), PCyp(3) = tris(cyclopentylphosphine)] spontaneously undergoes dehydrogenation of each PCyp(3) ligand in CH(2)Cl(2) solution to form an equilibrium mixture of cis-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 a) and trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 b), which have hybrid phosphine-alkene ligands. In this reaction nbd acts as a sequential acceptor of hydrogen to eventually give norbornane. Complex 2 b is distorted in the solid-state away from square planar. DFT calculations have been used to rationalise this distortion. Addition of H(2) to 2 a/b hydrogenates the phosphine-alkene ligand and forms the bisdihydrogen/dihydride complex [Rh(PCyp(3))(2)(H)(2)(eta(2)-H(2))(2)][BAr(F) (4)] (5) which has been identified spectroscopically. Addition of the hydrogen acceptor tert-butylethene (tbe) to 5 eventually regenerates 2 a/b, passing through an intermediate which has undergone dehydrogenation of only one PCyp(3) ligand, which can be trapped by addition of MeCN to form trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(PCyp(3))(NCMe)][BAr(F) (4)] (6). Dehydrogenation of a PCyp(3) ligand also occurs on addition of Na[BAr(F) (4)] to [RhCl(nbd)(PCyp(3))] in presence of arene (benzene, fluorobenzene) to give [Rh(eta(6)-C(6)H(5)X){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (7: X = F, 8: X = H). The related complex [Rh(nbd){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] 9 is also reported. Rapid ( approximately 5 minutes) acceptorless dehydrogenation occurs on treatment of [RhCl(dppe)(PCyp(3))] with Na[BAr(F) (4)] to give [Rh(dppe){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (10), which reacts with H(2) to afford the dihydride/dihydrogen complex [Rh(dppe)(PCyp(3))(H)(2)(eta(2)-H(2))][BAr(F) (4)] (11). Competition experiments using the new mixed alkyl phosphine ligand PCy(2)(Cyp) show that [RhCl(nbd){PCy(2)(Cyp)}] undergoes dehydrogenation exclusively at the cyclopentyl group to give [Rh(eta(6)-C(6)H(5)X){PCy(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (17: X = F, 18: X = H). The underlying reasons behind this preference have been probed using DFT calculations. All the complexes have been characterised by multinuclear NMR spectroscopy, and for 2 a/b, 4, 6, 7, 8, 9 and 17 also by single crystal X-ray diffraction.  相似文献   

4.
The sterically crowded (C(5)Me(5))(3)U complex reacts with KC(8) or K/(18-crown-6) in benzene to form [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)), 1, and KC(5)Me(5). These reactions suggested that (C(5)Me(5))(3)U could be susceptible to (C(5)Me(5))(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C(5)Me(5))(3)U was treated with KN(SiMe(3))(2) to form (C(5)Me(5))(2)U[N(SiMe(3))(2)] and KC(5)Me(5). 1 has long U-C(C(5)Me(5)) bond distances comparable to (C(5)Me(5))(3)U, and it too is susceptible to (C(5)Me(5))(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe(3))(2) to make its amide-substituted analogue [[(Me(3)Si)(2)N](C(5)Me(5))U](2)(mu-eta(6):eta(6)-C(6)H(6)), 2. Complexes 1 and 2 have nonplanar C(6)H(6)-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form [(C(5)Me(5))(C(8)H(8))U](2)(mu-eta(3):eta(3)-C(8)H(8)), (C(5)Me(5))(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C(5)Me(5))(1-) ligands, and two electrons from a bridging (C(6)H(6))(2-) moiety.  相似文献   

5.
(C(5)Me(5))(2)Y(eta(3)-C(3)H(5)) reacts with 9-borabicyclo[3.3.1]nonane, 9-BBN, to form single crystals containing both a borane-substituted allyl complex, (C(5)Me(5))(2)Y[eta(3)-C(3)H(4)(BC(8)H(14))], and a borohydride, (C(5)Me(5))(2)Y(micro-H)(2)BC(8)H(14), that can be synthesized directly from 9-BBN and the yttrium hydride, [(C(5)Me(5))(2)YH](x).  相似文献   

6.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

7.
The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.  相似文献   

8.
Ytterbocene [Yb(C(5)MeH(4))(2)(thf)(2)] reacts with diazabutadiene 2,6-iPr(2)C(6)H(3)-N=CH-CH=N-C(6)H(3)iPr(2)-2,6 (DAD) as a one-electron reductant to afford a bis(cyclopentadienyl) Yb(III) derivative containing a DAD radical anion [Yb(C(5)MeH(4))(2)(dad(-.))]. However, ytterbocenes [YbCp*(2)(thf)(2)] (Cp*=C(5)Me(5), C(5)Me(4)H) coordinated by sterically demanding cyclopentadienyl ligands act as two-electron reductants in their reactions with DAD. These reactions occur by abstraction of one Cp* ring and result in the formation of novel Yb(III) mixed-ligand bent-sandwich complexes, [YbCp*(dad)(thf)], in which the dianion of DAD has an uncommon terminal eta(4)-coordination to the ytterbium atom. The variable-temperature magnetic measurements of complex [Yb(C(5)Me(5))(dad)(thf)] suggest the existence of redox tautomerism for this compound.  相似文献   

9.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

10.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

11.
Ammonolyses of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives [Ti(eta5-C5Me5)X3] (X = NMe2, Me, Cl) have been carried out in solution to give polynuclear nitrido complexes. Reaction of the tris(dimethylamido) derivative [Ti(eta5-C5Me5)(NMe2)3] with excess of ammonia at 80-100 degrees C gives the cubane complex [[Ti(eta5-C5Me5)]4(mu3-N)4] (1). Treatment of the trimethyl derivative [Ti(eta5-C5Me5)Me3] with NH3 at room temperature leads to the trinuclear imido-nitrido complex [[Ti(eta/5-CsMes)(mu-NH)]3(mu3-N)] (2) via the intermediate [[Ti(eta5-C5Me5)Me]2(mu-NH)2] (3). The analogous reaction of [Ti(eta5-C5Me5)Me3] with 2,4,6-trimethylaniline (ArNH2) gives the dinuclear imido complex [[Ti(eta5-C5Me5)Me])2(mu-NAr)2] (4) which reacts with ammonia to afford [[Ti(eta5-C5Me5)(NH2)]2(mu-NAr)2] (5). Complex 2 has been used, by treatments with the tris(dimethylamido) derivatives [Ti(eta5-C5H5-nRn)(NMe2)3], as precursor of the cubane nitrido systems [[Ti4(eta5-C5Me5)3(eta5-C5H5-nRn)](mu3-N)4] [R = Me n = 5 (1), R = H n = 0 (6), R = SiMe3 n = 1 (7), R = Me n = 1 (8)] via dimethylamine elimination. Reaction of [Ti(eta5-C5Me5)Cl3] or [Ti(eta5-C5Me5)(NMe2)Cl2] with excess of ammonia at room temperature gives the dinuclear complex [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) where an intramolecular hydrogen bonding and a nonlineal nitrido ligand bridge the "Ti(eta5-C5Me5)Cl(NH3)" and "Ti(eta5-C5Me5)Cl2" moieties. The molecular structures of [[Ti(eta5-C5Me5)Me]2 (mu-NAr)2] (4) and [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) have been determined by X-ray crystallographic studies. Density functional theory calculations also have been conducted on complex 9 to confirm the existence of an intramolecular N-H...Cl hydrogen bond and to evaluate different aspects of its molecular disposition.  相似文献   

12.
Addition of 2 equiv of a sigma-donor ligand (L = pyridine, 4-picoline, or quinoline) to complexes of the type [W(NPh)(eta(4)-arene)(o-(Me3SiN)2C6H4)] (arene = CH3CH2C6H5 (3), CH3CH2CH2C6H5 (4)) gave the W(IV)L2 compounds, [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2] (5), [W(NPh)(o-(Me3SiN)2C6H4)(p-C6H7N)2] (6), and [W(NPh)(o-(Me3SiN)2C6H4)(C9H7N)2] (7). Synthesis of compounds 5 and 6 by Na degrees reduction of [W(NPh)(o-(Me3SiN)2C6H4)Cl2] in the presence of 3 equiv of L (L = 5, pyridine or 6, 4-picoline) is also presented. Compounds 5, 6, and 7 display hindered rotation of the donor ligands about the W-N bonds, resulting from a steric interaction with the Me3Si groups of the diamide ligand. The coordinative unsaturation of 5 and 6 has also been explored. Compounds 5 and 6 readily react with either CO and PMe3 to generated the six coordinate complexes [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2(CO)] (8a), [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)2(CO)] (8b), [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)(PMe3)2] (10a), and [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)(PMe3)2] (10b), respectively.  相似文献   

13.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

14.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

15.
Homo- and heterobimetallic complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}] (in which (1,8-S(2)-nap)=naphtho-1,8-dithiolate and {ML(n)}={PtCl(2)} (1), {PtClMe} (2), {PtClPh} (3), {PtMe(2)} (4), {PtIMe(3)} (5) and {Mo(CO)(4)} (6)) were obtained by the addition of [PtCl(2)(NCPh)(2)], [PtClMe(cod)] (cod=1,5-cyclooctadiene), [PtClPh(cod)], [PtMe(2)(cod)], [{PtIMe(3)}(4)] and [Mo(CO)(4)(nbd)] (nbd=norbornadiene), respectively, to [Pt(PPh(3))(2)(1,8-S(2)-nap)]. Synthesis of cationic complexes was achieved by the addition of one or two equivalents of a halide abstractor, Ag[BF(4)] or Ag[ClO(4)], to [{Pt(mu-Cl)(mu-eta(2):eta(1)-C(3)H(5))}(4)], [{Pd(mu-Cl)(eta(3)-C(3)H(5))}(2)], [{IrCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)] (in which C(5)Me(5)=Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), [{RhCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)], [PtCl(2)(PMe(2)Ph)(2)] and [{Rh(mu-Cl)(cod)}(2)] to give the appropriate coordinatively unsaturated species that, upon treatment with [(PPh(3))(2)Pt(1,8-S(2)-nap)], gave complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}][X] (in which {ML(n)}[X]={Pt(eta(3)-C(3)H(5))}[ClO(4)] (7), {Pd(eta(3)-C(3)H(5))}[ClO(4)] (8), {IrCl(eta(5)-C(5)Me(5))}[ClO(4)] (9), {RhCl(eta(5)-C(5)Me(5))}[BF(4)] (10), {Pt(PMe(2)Ph)(2)}[ClO(4)](2) (11), {Rh(cod)}[ClO(4)] (12); the carbonyl complex {Rh(CO)(2)}[ClO(4)] (13) was formed by bubbling gaseous CO through a solution of 12. In all cases the naphtho-1,8-dithiolate ligand acts as a bridge between two metal centres to give a four-membered PtMS(2) ring (M=transition metal). All compounds were characterised spectroscopically. The X-ray structures of 5, 6, 7, 8, 10 and 12 reveal a binuclear PtMS(2) core with PtM distances ranging from 2.9630(8)-3.438(1) A for 8 and 5, respectively. The napS(2) mean plane is tilted with respect to the PtP(2)S(2) coordination plane, with dihedral angles in the range 49.7-76.1 degrees and the degree of tilting being related to the PtM distance and the coordination number of M. The sum of the Pt(1)coordination plane/napS(2) angle, a, and the Pt(1)coordination plane/M(2)coordination plane angle, b, a+b, is close to 120 degrees in nearly all cases. This suggests that electronic effects play a significant role in these binuclear systems.  相似文献   

16.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

17.
The reductive reactivity of lanthanide hydride ligands in the [(C5Me5)2LnH]x complexes (Ln = Sm, La, Y) was examined to see if these hydride ligands would react like the actinide hydrides in [(C5Me5)2AnH2]2 (An = U, Th) and [(C5Me5)2UH]2. Each lanthanide hydride complex reduces PhSSPh to make [(C5Me5)2Ln(mu-SPh)]2 in approximately 90% yield. [(C5Me5)2SmH]2 reduces phenazine and anthracene to make [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C12H8N2) and [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C10H14), respectively, but the analogous [(C5Me5)2LaH]x and [(C5Me5)2YH]2 reactions are more complicated. All three lanthanide hydrides reduce C8H8 to make (C5Me5)Ln(C8H8) and (C5Me5)3Ln, a reaction that constitutes another synthetic route to (C5Me5)3Ln complexes. In the reaction of [(C5Me5)2YH]2 with C8H8, two unusual byproducts are obtained. In benzene, a (C5Me5)Y[(eta(5)-C5Me4CH2-C5Me4CH2-eta(3))] complex forms in which two (C5Me5)(1-) rings are linked to make a new type of ansa-allyl-cyclopentadienyl dianion that binds as a pentahapto-trihapto chelate. In cyclohexane, a (C5Me5)2Y(mu-eta(8):eta(1)-C8H7)Y(C5Me5) complex forms in which a (C8H8)(2-) ring is metalated to form a bridging (C8H7)(3-) trianion.  相似文献   

18.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

19.
The chiral phosphanylamides {N(R-CHMePh)(PPh(2))}(-) and {N(S-CHMePh)(PPh(2))}(-) were introduced into rare earth chemistry. Transmetalation of the enantiomeric pure lithium compounds Li{N(R-CHMePh)(PPh(2))} (1a) and Li{N(S-CHMePh)(PPh(2))} (1b) with lanthanide bis(phosphinimino)methanide dichloride [{CH(PPh(2)NSiMe(3))(2)}LnCl(2)](2) in a 2:1 molar ratio in THF afforded the enantiomeric pure complexes [{CH(PPh(2)NSiMe(3))(2)}Ln(Cl){eta(2)-N(R-CHMePh)(PPh(2))}] (Ln = Er (2a), Yb (3a), Lu (4a)) and [{CH(PPh(2)NSiMe(3))(2)}Ln(Cl){eta(2)-N(S-CHMePh)(PPh(2))}] (Ln = Er (2b), Yb (3b), Lu (4b)). The solid-state structures of 2a and 3a,b were established by single-crystal X-ray diffraction. Attempts to synthesize compounds 3 in a one-pot reaction starting from K{CH(PPh(2)NSiMe(3))(2)}, YbCl(3), and 1 resulted in the lithium chloride incorporated complex [{(Me(3)SiNPPh(2))(2)CH}Yb(mu-Cl)(2)LiCl(THF)(2)] (5). In an alternative approach to give chiral rare earth compounds in a one-pot reaction 1a or 1b was reacted with LnCl(3) and K(2)C(8)H(8) to give the enantiomeric pure cyclooctatetraene compounds [{eta(2)-N(R-CHMePh)(PPh(2))}Ln(eta(8)-C(8)H(8))] (Ln = Y (6a), Er (7a), Yb (8)) and [{eta(2)-N(S-CHMePh)(PPh(2))}Ln(eta(8)-C(8)H(8))] (Ln = Y (6b), Er (7b)). The structures of 6a,b, 7a, and 8 were confirmed by single-crystal X-ray diffraction in the solid state.  相似文献   

20.
Zhang J  Cai R  Chen Z  Zhou X 《Inorganic chemistry》2007,46(1):321-327
Four novel tri- or tetranuclear organolanthanide metallomacrocycles [Cp2Ln(mu-Im)(THF)3 (Cp = C5H5, Ln = Yb (1), Er (2)], [Cp2Dy(mu-Im)]4(THF)]3 x 2THF (3), and [Cp'2Yb(mu-eta1:eta2-Tz)]4 x 2THF (Cp' = CH3C5H4) (4) have been synthesized through protolysis of Cp3Ln or Cp'3Yb with imidazole or triazole, indicating that both the bridge-ligand size and the lanthanide-ion radii can be applied in the modulation of the metallomacrocycles. Further investigations on the reactivity of complexes 1, 3, and 4 toward phenyl isocyanate reveal that PhNCO inserts readily into the simple bridge Ln-N bonds of 1 and 3 to yield the corresponding insertion products [Cp2Ln(mu-eta1:eta2-OC(Im)NPh)]3 (Ln = Yb (5), Dy (6)) but cannot insert into the Ln-N bond with a mu-eta1:eta2-bonding mode in 4. The novel bridge ligand [OC(Im)NPh] can expand the numbers of the ring members from 12 to 18 in 5 or 16 to 18 in 6. The number of metal atoms in the metallacycles with the ligand [OC(Im)NPh] is independent of the lanthanide-ion size; both trinuclear lanthanide macrocycles are observed in 5 and 6. All of these new complexes have been characterized by elemental analysis and spectroscopic properties, and their structures have also been determined through X-ray single-crystal diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号